-

Title: Informed Search Methods Required reading: AIMA, Chapter 3 (Sections 3.5, 3.6) LWH: Chapters 6, 10, 13 and 14.

> Introduction to Artificial Intelligence CSCE 476-876, Spring 2015 URL: www.cse.unl.edu/~choueiry/S15-476-876

> > Berthe Y. Choueiry (Shu-we-ri) (402)472-5444

Outline

- Categorization of search techniques
- Ordered search (search with an evaluation function)
- Best-first search:
 - (1) Greedy search (2) A^*
- Admissible heuristic functions: how to compare them? how to generate them? how to combine them?

 \mathbb{N}

Types of Search (I)

1- Uninformed vs. informed

2- Systematic/constructive vs. iterative improvement

Uninformed :

use only information available in problem definition, no idea about distance to goal

 \rightarrow can be incredibly ineffective in practice

Heuristic :

exploits some knowledge of the domain also useful for solving optimization problems

ಲು

 \mathbf{P}

Types of Search (II)

Systematic, exhaustive, constructive search:

a partial solution is incrementally extended into global solution

```
Partial solution =
```

sequence of transitions between states

```
Global solution =
```

Solution from the initial state to the goal state

Examples: $\begin{cases} Uninformed \\ Informed (heuristic): Greedy search, A^* \end{cases}$

 \rightarrow Returns the path; solution = path

Types of Search (III)

Iterative improvement:

A state is gradually modified and evaluated until reaching an (acceptable) optimum

 \rightarrow We don't care about the path, we care about 'quality' of state

- \rightarrow Returns a state; a solution = good quality state
- \rightarrow Necessarily an informed search

СЛ

Ordered search

• Strategies for systematic search are generated by choosing which node from the fringe to expand first

• The node to expand is chosen by an <u>evaluation function</u>, expressing 'desirability' \longrightarrow <u>ordered search</u>

• When nodes in queue are sorted according to their decreasing <u>values</u> by the evaluation function $\longrightarrow \underline{\text{best-first search}}$

• Warning: 'best' is actually 'seemingly-best' given the evaluation function. Not always best (otherwise, we could march directly to the goal!)

6

Search using an evaluation function

• Example: uniform-cost search!

What is the evaluation function?

Evaluates cost from?

• How about the cost \underline{to} the goal?

 $h(n) = \underline{\text{estimated}} \text{ cost of the cheapest}$ path from the state at node n to a goal state h(n) would help focusing search

7

Cost to the goal

This information is <u>not</u> part of the problem description

Arad 366 Mehadia 241 **Bucharest** Neamt 0 234 Craiova Oradea 160 380 Dobreta Pitesti 242 100 **Eforie Rimnicu Vilcea** 161 193 Sibiu Fagaras 176 253 Giurgiu Timisoara 77 329 Hirsova 151 Urziceni 80 Iasi 226 Vaslui 199 244 Zerind Lugoj 374

 ∞

Best-first search

- 1. <u>Greedy search</u> chooses the node n closest to the goal such as h(n) is minimal
- 2. <u>A* search</u> chooses the least-cost solution solution cost f(n) $\begin{cases}
 g(n): \text{ cost from root to a given node } n \\
 + \\
 h(n): \text{ cost from the node } n \text{ to the goal node} \\
 \text{ such as } f(n) = g(n) + h(n) \text{ is minimal}
 \end{cases}$

9

Greedy search

 \rightarrow First expand the node whose state is 'closest' to the goal!

 \rightarrow Minimize h(n)

function BEST-FIRST-SEARCH(*problem*, EVAL-FN) **returns** a solution sequence **inputs**: *problem*, a problem *Eval-Fn*, an evaluation function

Queueing- $Fn \leftarrow$ a function that orders nodes by EVAL-FN return GENERAL-SEARCH(*problem*, Queueing-Fn)

 \rightarrow U sually, cost of reaching a goal may be <u>estimated</u>, not determined exactly

?

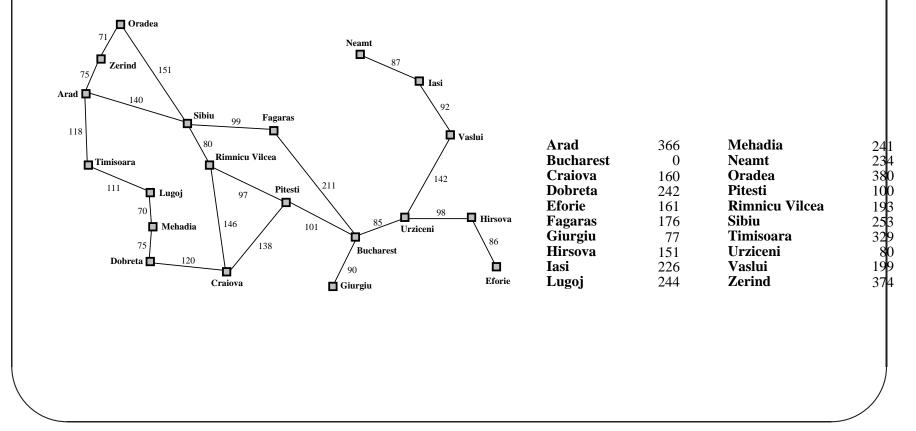
- \rightarrow If state at n is goal, h(n) =
- \rightarrow How to choose h(n)?

Problem specific! Heuristic!

10

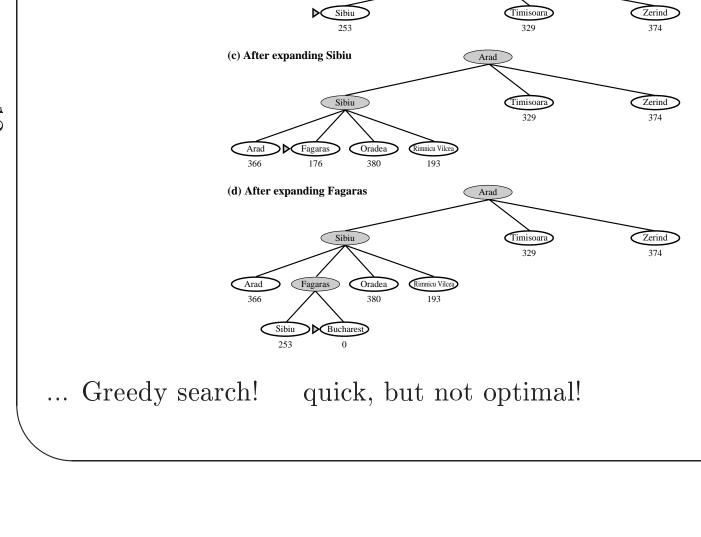
Greedy search: Romania

 $h_{\text{SLD}}(n) = \text{straight-line distance between } n \text{ and goal location}$



11

B.Y. Choueiry



Greedy search: Trip from Arad to Bucharest

Arad Þ

366

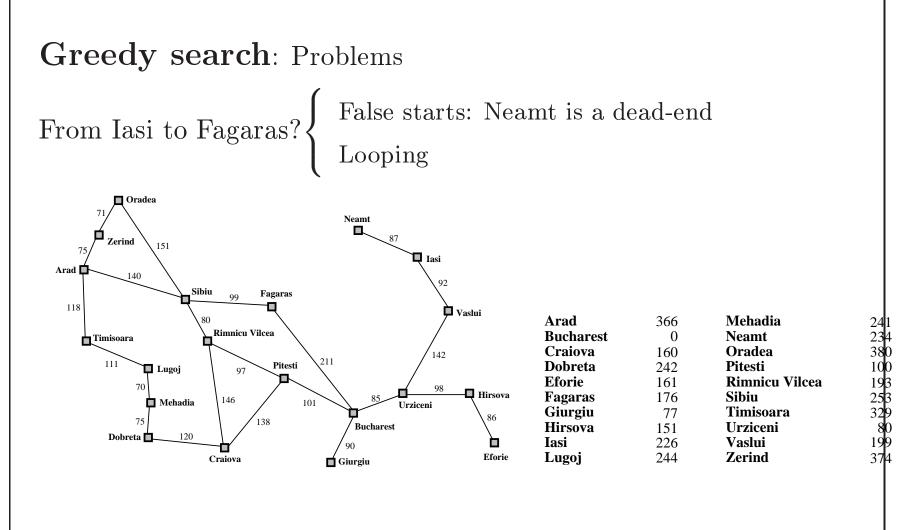
Arad

(a) The initial state

(b) After expanding Arad

12

B.Y. Choueiry



Instructor's notes #7 February 13, 2015

Greedy search: Properties

- \rightarrow Like depth-first, tends to follow a single path to the goal
- $\rightarrow \text{Like depth-first} \begin{cases} \text{Not complete} \\ \text{Not optimal} \end{cases}$
- \rightarrow Time complexity: $O(b^m)$, m maximum depth
- \rightarrow Space complexity: $O(b^m)$ retains all nodes in memory
- \rightarrow Good h function (considerably) reduces space and time but h functions are problem dependent :—(

14

Hmm...

Greedy search minimizes estimated cost to goal h(n)

 \rightarrow cuts <u>search cost</u> considerably

 \rightarrow but not optimal, not complete

Uniform-cost search minimizes cost of the path so far g(n)

 \rightarrow is optimal and complete

 \rightarrow but can be wasteful of resources

New-Best-First search minimizes f(n) = g(n) + h(n)

 \rightarrow combines greedy and uniform-cost searches

f(n) = estimated cost of cheapest solution via n

 \rightarrow Provably: complete and optimal, if h(n) is admissible

A* Search

• A^* search

Best-first search expanding the node in the fringe with minimal f(n) = g(n) + h(n)

- A* search with admissible h(n)Provably complete, optimal, and optimally efficient using TREE-SEARCH
- A* search with consistent h(n)Remains optimal even using GRAPH-SEARCH

(See Tree-Search versus Graph-Search page 77)

Admissible heuristic

An admissible heuristic is a heuristic that <u>never overestimates</u> the cost to reach the goal

- \rightarrow is optimistic
- \rightarrow thinks the cost of solving is less than it actually is

If <u>h is admissible</u>,

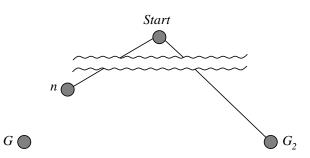
f(n) never overestimates the actual cost of the best solution through n.



B.Y. Choueiry

A* Search is optimal

 $G, G_2 \text{ goal states} \Rightarrow g(G) = f(G), f(G_2) = g(G_2) \qquad {}^{h(G) = h(G_2) = 0}$ $G \text{ optimal goal state} \Rightarrow C^* = f(G)$ $G_2 \text{ suboptimal} \Rightarrow f(G_2) > C^* = f(G) \qquad (1)$ Suppose n is not chosen for expansion



 $h \text{ admissible} \Rightarrow C^* \ge f(n)$ (2)

Since *n* was not chosen for expansion $\Rightarrow f(n) \ge f(G_2)$ (3) (2) + (3) $\Rightarrow C^* \ge f(G_2)$ (4)

(1) and (4) are contradictory $\Rightarrow n$ should be chosen for expansion

19

Which nodes does A^* expand?

GOAL-TEST is applied to STATE(node) when a node is chosen from the fringe for expansion, <u>not</u> when the node is generated

Theorem 3 & 4 in Pearl 84, original results by Nilsson

- Necessary condition: Any node expanded by A^{*} cannot have an f value exceeding C^* : For all nodes expanded, $f(n) \leq C^*$
- Sufficient condition: Every node in the fringe for $f(n) < C^*$ will eventually be expanded by A*

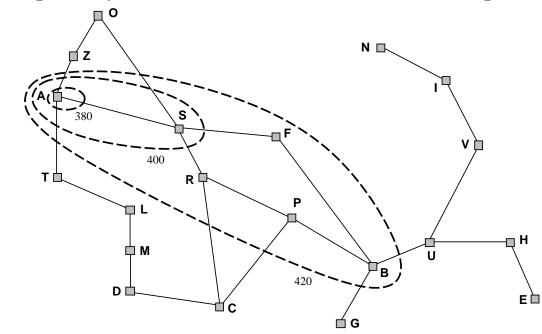
In summary

- A^{*} expands all nodes with $f(n) < C^*$
- A^{*} expands some nodes with $f(n) = C^*$
- A^{*} expands no nodes with $f(n) > C^*$

B.Y. Choueiry

Expanding contours

A^{*} expands nodes from fringe in increasing f value We can conceptually draw contours in the search space



The <u>first</u> solution found is necessarily the optimal solution Careful: a TEST-GOAL is applied at node expansion

21

A^* Search is complete

Since A^{*} search expands all nodes with $f(n) < C^*$, it must eventually reach the goal state unless there are infinitely many nodes $f(n) < C^* \begin{cases} 1. \exists a node with infinite branching factor \\ or \\ 2. \exists a path with infinite number of nodes along it \end{cases}$

 $\begin{array}{l} {\rm A}^* \mbox{ is complete if } \left\{ \begin{array}{l} \mbox{ on locally finite graphs} \\ \mbox{ and } \\ \\ \exists \delta > 0 \mbox{ constant, the cost of each operator } > \delta \end{array} \right. \end{array} \right.$

\mathbf{A}^* \mathbf{Search} Complexity

Time:

Exponential in (relative error in $h \times \text{length of solution path})$... quite bad

Space: must keep all nodes in memory

Number of nodes within goal contour is exponential in length of solution.... unless the error in the heuristic function $|h(n) - h^*(n)|$ grows no faster than the log of the actual path cost: $|h(n) - h^*(n)| \le O(\log h^*(n))$ In practice, the error is proportional... impractical..

major drawback of A^* : runs out of space quickly

 \rightarrow Memory Bounded Search IDA^{*}(not addressed here)

A^{*} Search is optimally efficient

.. for any given evaluation function: no other algorithms that finds the optimal solution is guaranteed to expend fewer nodes than ${\rm A}^*$

<u>Interpretation</u> (proof not presented): Any algorithm that does not expand all nodes between root and the goal contour risks missing the optimal solution

24

Tree-Search vs. Graph-Search

After choosing a node from the fringe and before expanding it, GRAPH-SEARCH checks whether STATE(node) was visited before to avoid loops.

 \rightarrow Graph-search may lose optimal solution

Solutions

- 1. In Graph-Search, discard the more expensive path to a node
- 2. Ensure that the optimal path to any repeated state is the first one found
 - \rightarrow Consistency

Consistency

h(n) is consistent

If $\forall n \text{ and } \forall n' \text{ successor of } n \text{ along a path, we have}$ $h(n) \leq k(n, n') + h(n'), k \text{ cost of cheapest path from } n \text{ to } n'$

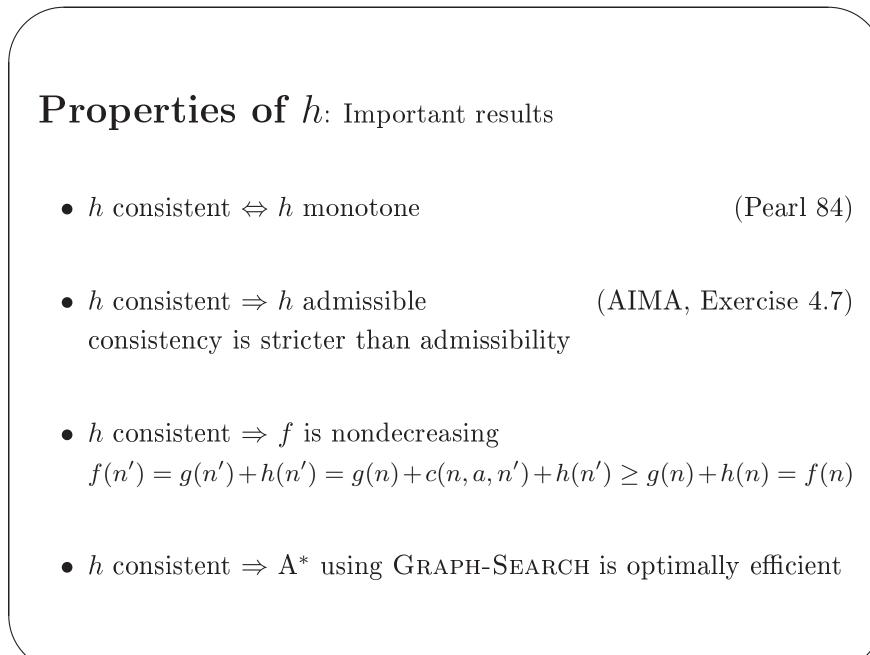
Monotonicity

h(n) is monotone

If $\forall n \text{ and } \forall n' \text{ successor of } n \text{ generated by action } a$, we have $h(n) \leq c(n, a, n') + h(n'), n' \text{ is an } \underline{\text{immediate}} \text{ successor of } n$ Triangle inequality $(\langle n, n', \text{ goal} \rangle)$

Important: h is consistent $\Leftrightarrow h$ is monotone

Beware: of confusing terminology 'consistent' and 'monotone' Values of h not necessarily decreasing/nonincreasing



Pathmax equation

Monotonicity of f: values along a path are nondecreasing When f is not monotonic, use **pathmax** equation

f(n') = max(f(n), g(n') + h(n'))

 \mathbf{A}^* never decreases along any path out from root

$$g(n) = 3$$

$$h(n) = 4$$

$$g(n') = 4$$

$$h(n') = 2$$

$$n'$$

Pathmax

- guarantees f nondecreasing
- does not guarantee h consistent
- does not guarantee $A^* + GRAPH$ -SEARCH is optimally efficient

28

Summarizing definitions for \mathbf{A}^*

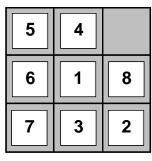
- A* is a best-first search that expands the node in the fringe with minimal f(n) = g(n) + h(n)
- An admissible function h never overestimates the distance to the goal.
- h admissible \Rightarrow A^{*} is complete, optimal, optimally efficient using TREE-SEARCH
- $h \text{ consistent} \Leftrightarrow h \text{ monotone}$
 - $h \text{ consistent} \Rightarrow h \text{ admissible}$
 - $h \text{ consistent} \Rightarrow f \text{ nondecreasing}$
- $h \text{ consistent} \Rightarrow A^* \text{ remains optimal using GRAPH-SEARCH}$

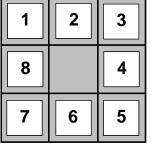
Admissible heuristic functions

Examples

• Route-finding problems: straight-line distance

• 8-puzzle: $\begin{cases} h_1(n) = \text{number of misplaced tiles} \\ h_2(n) = \text{total Manhattan distance} \end{cases}$





Goal State

 $\begin{vmatrix} h_1(S) = ? \\ h_2(S) = ? \end{vmatrix}$

Performance of admissible heuristic functions

Two criteria to compare <u>admissible</u> heuristic functions:

- 1. Effective branching factor: b^*
- 2. Dominance: number of nodes expanded

Instructor's notes #7 February 13, 2015

Effective branching factor b^*

– The heuristic expands N nodes in total

– The solution depth is d

 $\longrightarrow b^*$ is the branching factor had the tree been uniform $N = 1 + b^* + (b^*)^2 + \ldots + (b^*)^d = \frac{(b^*)^{d+1} - 1}{b^* - 1}$ - Example: $N=52, d=5 \rightarrow b^* = 1.92$

32

Dominance

If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 <u>dominates</u> h_1 and is better for search Typical search costs: nodes expanded

Sol. depth	IDS	$\mathbf{A}^*(h_1)$	$\mathbf{A}^*(h_2)$
d = 12	$3,\!644,\!035$	227	73
d = 24	too many	$39,\!135$	$1,\!641$

A* expands all nodes $f(n) < C^* \Rightarrow g(n) + h(n) < C^*$ $\Rightarrow h(n) < C^* - g(n)$

If $h_1 \leq h_2$, A^{*} with h_1 will always expand at least as many (if not more) nodes than A^{*} with h_2

 \longrightarrow It is always better to use a heuristic function with <u>higher values</u>, as long as it does not overestimate (remains admissible)

とじ

34

How to generate admissible heuristics?

 \rightarrow Use exact solution cost of a relaxed (easier) problem

Steps:

- Consider problem P
- Take a problem P^\prime easier than P
- Find solution to P'
- Use solution of P' as a heuristic for P

Relaxing the 8-puzzle problem

A tile can move mode square A to square B if A is (horizontally or vertically) adjacent to B <u>and</u> B is blank

- A tile can move from square A to square B if A is adjacent to B The rules are relaxed so that a tile can move to any adjacent square: the shortest solution can be used as a heuristic (≡ h₂(n))
- A tile can move from square A to square B if B is blank Gaschnig heuristic (Exercice 3.31, AIMA, page 119)
- 3. A tile can move from square A to square B The rules of the 8-puzzle are relaxed so that a tile can move anywhere: the shortest solution can be used as a heuristic $(\equiv h_1(n))$

36

An admissible heuristic for the TSP

Let path be any structure that connects all cities ⇒ minimum spanning tree heuristic (polynomial) (Exercice 3.30, AIMA, page 119)

$Combining \ several \ {\rm admissible \ heuristic \ functions}$

We have a set of admissible heuristics $h_1, h_2, h_3, \ldots, h_m$ but no heuristic that dominates all others, what to do?

$$\longrightarrow h(n) = \max(h_1(n), h_2(n), \dots, h_m(n))$$

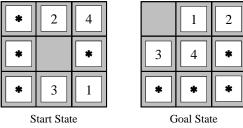
h is admissible and dominates all others.

 \rightarrow Problem:

Cost of computing the heuristic (vs. cost of expanding nodes)

B.Y. Choueiry

Using subproblems to derive an admissible heuristic function Goal: get 1, 2, 3, 4 into their correct positions, ignoring the 'identity' of the other tiles



Cost of optimal solution to subproblem used as a lower bound (and is substantially more accurate than Manhattan distance) Pattern databases:

- Identify patterns (which represent several possible states)
- Store cost of <u>exact</u> solutions of patterns
- During search, retrieve cost of pattern and use as a (tight) estimate

Cost of building the database is amortized over 'time'

38