Title: Solving Problems by Searching

AIMA: Chapter 3 (Sections 3.4)

Introduction to Artificial Intelligence CSCE 476-876, Spring 2015

URL: www.cse.unl.edu/~cse476 URL:

www.cse.unl.edu/~choueiry/S15-476-876

Berthe Y. Choueiry (Shu-we-ri) choueiry@cse.unl.edu, (402)472-5444

function GENERAL-SEARCH(*problem*, *strategy*) **returns** a solution, or failure initialize the search tree using the initial state of *problem* **loop do**

if there are no candidates for expansion then return failure choose a leaf node for expansion according to *strategy* if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree
 end

Essence of search: which node to expand first?

 \longrightarrow search strategy

A strategy is defined by picking the order of node expansion

Types of Search

Uninformed: use only information available in problem definition

Heuristic: exploits some knowledge of the domain

Uninformed search strategies

- 1. Breadth-first search
- 2. Uniform-cost search
- 3. Depth-first search
- 4. Depth-limited search
- 5. Iterative deepening depth-first search
- 6. Bidirectional search

Search strategies

Criteria for evaluating search:

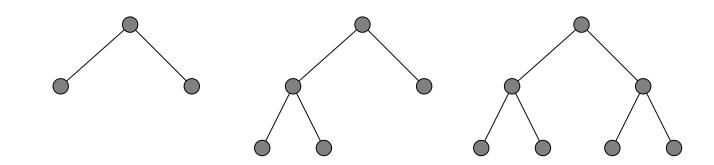
- 1. Completeness: does it always find a solution if one exists?
- 2. Time complexity: number of nodes generated/expanded
- 3. Space complexity: maximum number of nodes in memory
- 4. Optimality: does it always find a least-cost solution?

Time/space complexity measured in terms of:

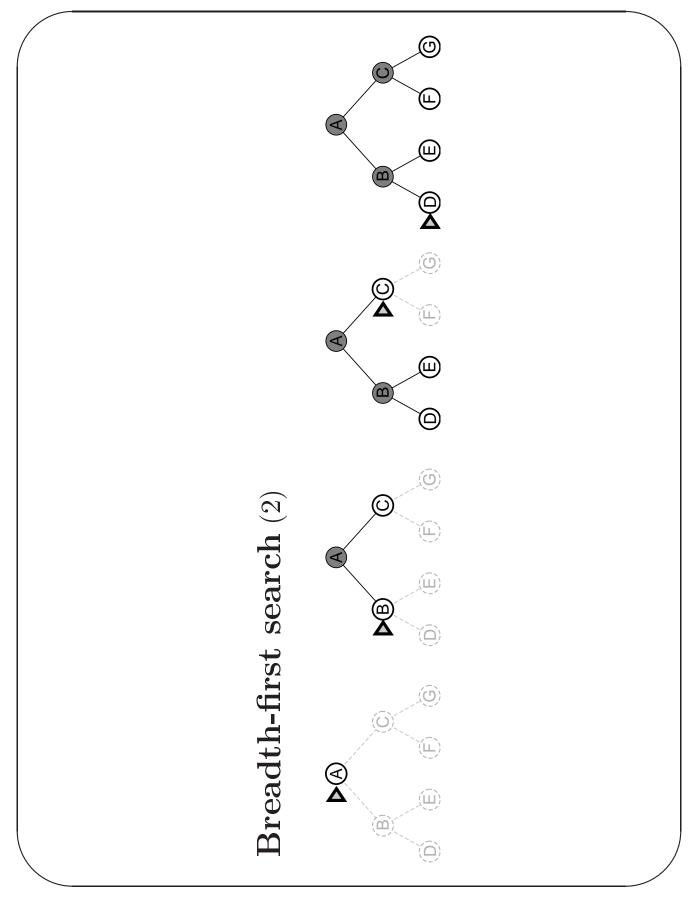
- b: maximum branching factor of the search tree
- d: depth of the least-cost solution
- m: maximum depth of the search space (may be ∞)

Breadth-first search (I)

- \rightarrow Expand root node
- \rightarrow Expand <u>all</u> children of root
- \rightarrow Expand each child of root
- \rightarrow Expand successors of each child of root, etc.



- \longrightarrow Expands nodes at depth d before nodes at depth d+1
- Systematically considers all paths length 1, then length 2, etc.
- → Implement: put successors at end of queue.. FIFO



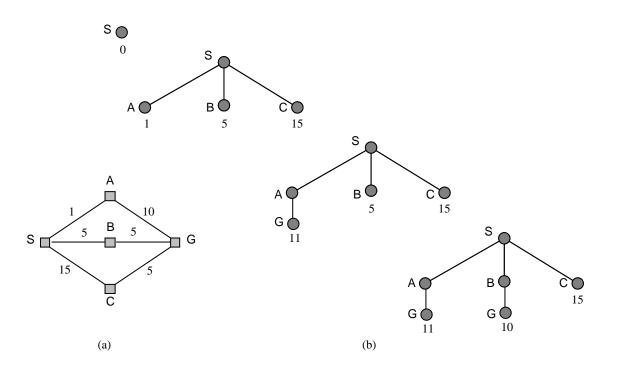
1

Breadth-first search (3)

- \longrightarrow One solution?
- → Many solutions? Finds shallowest goal first
 - 1. Complete? Yes, if b is finite
 - 2. Optimal? provided cost increases monotonically with depth, not in general (e.g., actions have same cost)
 - 3. Time? $1+b+b^2+b^3+\ldots+b^d+b(b^d-1)=O(b^{d+1})$ $O(b^{d+1}) \begin{cases} \text{branching factor } b \\ \text{depth } d \end{cases}$
 - 4. Space? same, $O(b^{d+1})$, keeps every node in memory, big problem can easily generate nodes at 10MB/sec so 24hrs = 860GB

- \longrightarrow Breadth-first does not consider path cost g(x)
- Uniform-cost expands first lowest-cost node on the fringe
- → Implement: sort queue in decreasing cost order

When $g(x) = \text{Depth}(x) \longrightarrow \text{Breadth-first} \equiv \text{Uniform-cost}$



 ∞

Uniform-cost search (2)

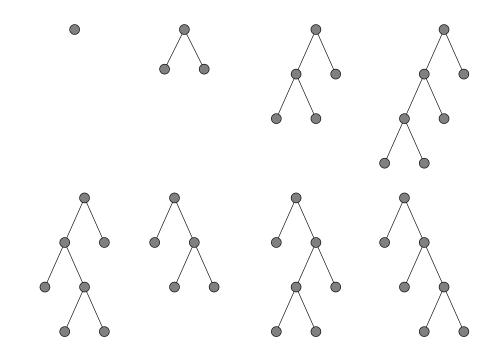
- 1. Complete? Yes, if $\cos t \ge \epsilon$
- 2. Optimal?

 If the cost is a monotonically increasing function

 When cost is added up along path, an operator's cost?
- 3. Time? # of nodes with $g \leq \text{cost of optimal solution}$, $O(b^{\lceil C^*/\epsilon \rceil})$ where C^* is the cost of the optimal solution
- 4. Space?
 # of nodes with $g \leq \text{cost of optimal solution}$, $O(b^{\lceil C^*/\epsilon \rceil})$

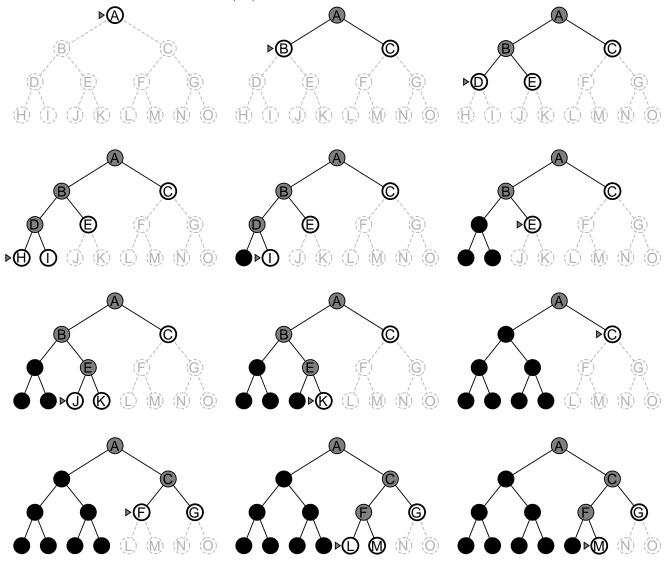
Depth-first search (I)

- When dead-end, goes back to shallower levels
- → Implement: put successors at front of queue.. LIFO



— Little memory: path and unexpanded nodes

For b: branching factor, m: maximum depth, space?



Depth-first search (3)

Time complexity:

We may need to expand all paths, $O(b^m)$

When there are many solutions, DFS may be quicker than BFS When m is big, much larger than d, ∞ (deep, loops), .. troubles

→ Major drawback of DFS: going deep where there is no solution...

Properties:

- 1. Complete? Not in infinite spaces, complete in finite spaces
- 2. Optimal?
- 3. Time? $O(b^m)$ Woow..

 terrible if m is much larger than d, but if solutions are dense,
 may be much faster than breadth-first
- 4. Space? O(bm), linear!

Woow...

Depth-limited search (I)

- → DFS is going too deep, put a threshold on depth!

 For instance, 20 cities on map for Romania, any node deeper than 19 is cycling. Don't expand deeper!
- \longrightarrow Implement: nodes at depth l have no successor

Properties:

- 1. Complete?
- 2. Optimal?
- 3. Time? (given l depth limit)
- 4. Space? (given *l* depth limit)

Problem: how to choose l?

Iterative-deepening search (I)

- \rightarrow DLS with depth = 0
- \rightarrow DLS with depth = 1
- \rightarrow DLS with depth = 2
- \rightarrow DLS with depth = 3...

Limit = 0

Limit = 2

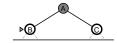
Limit = 3

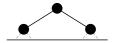
Limit = 3

 \rightarrow Combines benefits of DFS and BFS

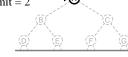
Limit = 0

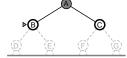
Limit = 1

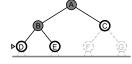




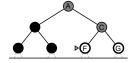
Limit = 2



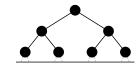




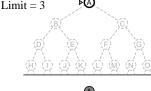


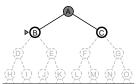


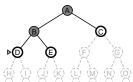


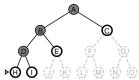


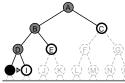
Limit = 3

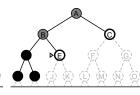


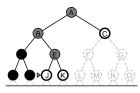


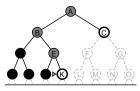


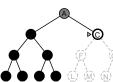


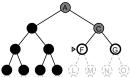


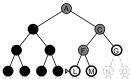


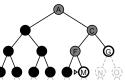












----- combines benefits of DFS and BFS

Properties:

1. Time? $(d+1).b^0 + (d).b + (d-1).b^2 + ... + 1.b^d = O(b^d)$

2. Space? O(bd), like DFS

3. Complete? like BFS

4. Optimal? like BFS (if step cost = 1)

Iterative-deepening search (4)

→ Some nodes are expanded several times, wasteful?

$$N(BFS) = b + b^2 + b^3 + ... + b^d + (b^{d+1} - b)$$

$$N(IDS) = (d)b + (d-1)b^2 + ... + (1)b^d$$

Numerical comparison for b = 10 and d = 5:

$$N(IDS) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450$$

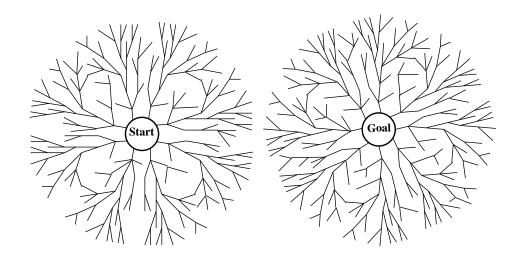
$$N(BFS) = 10\,+\,100\,+\,1,\!000\,+\,10,\!000\,+\,100,\!000\,+\,999,\!990\,=\,$$

1,111,100

→ IDS is preferred when search space is large and depth unknown

Bidirectional search (I)

 \rightarrow Given initial state and the goal state, start search from both ends and meet in the middle



 \rightarrow Assume same b branching factor, \exists solution at depth d, time: $O(2b^{d/2}) = O(b^{d/2})$

$$b = 10, d = 6, DFS = 1,111,111 \text{ nodes}, BDS = 2,222 \text{ nodes}!$$

Bidirectional search (2)

In practice :—(

- Need to define predecessor operators to search backwards If operator are invertible, no problem
- What if ∃ many goals (set state)?
 do as for multiple-state search
- need to check the 2 fringes to see how they match need to check whether any node in one space appears in the other space (use hashing) need to keep all nodes in a half in memory $O(b^{d/2})$
- What kind of search in each half space?

Summary

Criterion	Breadth-	Uniform-	Depth-	Depth-	Iterative
	First	Cost	First	Limited	Deepening
Complete?	Yes*	Yes*	No	Yes, if $l \geq d$	Yes
Time	b^{d+1}	$b^{\lceil C^*/\epsilon ceil}$	b^m	b^l	b^d
Space	b^{d+1}	$b^{\lceil C^*/\epsilon ceil}$	bm	bl	bd
Optimal?	Yes*	Yes*	No	No	Yes

b branching factor d solution depth m maximum depth of tree l depth limit

Loops: Avoid repeated states (I)

Avoid expanding states that have already been visited

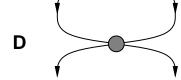
Valid for both infinite and finite trees

m maximum depth m+1 states

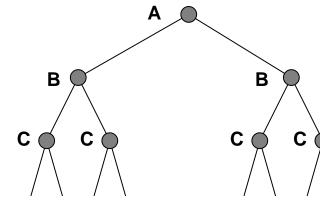
Example:

 2^m possible branches (paths)

Α В

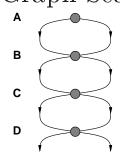


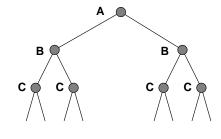
C



Loops: (2)

Discard a current node that matches a node in the closed list $Tree-Search \longrightarrow Graph-Search$





Issues:

- 1. Implementation: hash table, access is constant time Trade-off cost of storing+checking vs. cost of searching
- 2. Losing optimality when new path is cheaper/shorter of the one stored
- 3. DFS and IDS now require exponential storage

Summary

Path: sequence of actions leading from one state to another

Partial solution: a path from an initial state to another state

Search: develop a sets of partial solutions

- Search tree & its components (node, root, leaves, fringe)
- Data structure for a search node
- Search space vs. state space
- Node expansion, queue order
- Search types: uninformed vs. heuristic
- 6 uninformed search strategies
- 4 criteria for evaluating & comparing search strategies