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● This chapter is a bit weird
– It lacks a central thread of ideas

– It lacks a unifying thesis

– It doesn't present clear derivations of many of 
its theorems or techniques

● I'm not going to teach this chapter
● I will present this chapter
● I hope to acquaint you with this content, not 

impart true understanding of it
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● Introduction
● Basic Definitions
● Constraint Languages

– Expressiveness of Constraint Languages

– Complexity of Constraint Languages

● Hybrid Tractability
● Review
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● Constraint solvers allow you to define and 
solve constraint networks.

● They do this by defining some set of basic 
constraints to be applied to variables.

● This set of constraint primitives can be 
called the constraint language of the 
solver.
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● As a solver's constraint language increases 
in complexity, its expressiveness (the 
complexity of constraint satisfaction 
problems that it can describe) increases.

● On the other hand, a more complex 
constraint language requires more 
complex algorithms, and the solver's 
performance decreases accordingly.
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● It is therefore necessary to choose a 
balance between performance and 
expressiveness when designing a 
constraint language.

● This chapter focuses on the design of 
constraint languages that choose to be 
less expressive, but that have tractable 
performance.
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● A constraint language is a set of relations.
– e.g: {x=y, x≠y, x>y} or {x+y=z, x>y, x=3}

● The relational subclass of a constraint 
language is the set of all CSP instances 
that only use relations from the language.
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Tractability:
– Tractable Constraint Language

● A polynomial algorithm exists to solve all 
problems in its relational subclass

– Tractable Relation
● The constraint language consisting of only the 

relation is tractable
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Tractability seems to be heavily determined 
by domain size and constraint arity
– 2SAT (tractable)

● domain size 2 and constraint arity 2

– Graph 3-coloring (intractable)
● domain size 3 and constraint arity 2

– 3SAT (intractable)
● domain size 2 and constraint arity 3

However...
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An Example Constraint Language: CHiP
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An Example Constraint Language: CHiP
– Constraint Handling in Prolog

– Domain
●  ℕ (natural numbers)

– Constraint Language
● Domain constraints
● Arithmetic constraints
● Compound arithmetic constraints
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An Example Constraint Language: CHiP

1.)  Domain constraints (unary)
● x ≥ a; x ≤ a

2.)  Arithmetic constraints (unary or binary)
● ax ≠ b; ax = by + c; ax ≤ by + c; ax ≥ by + c

3.)  Compound arithmetic constraints (n-ary)
● a
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2
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● CHiP is actually tractable (!)
– Enforcing arc-consistency allows backtrack-

free solution generation

● CHiP breaks both previous heuristics:
– Domain  is infiniteℕ
– Compound arithmetic constraints can have 

arbitrary arity

● More to tractability than just those two 
factors
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The composition of constraint languages 
somehow determines their tractability
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More tractable languages:
– The Constant Language

– Max-closed Languages

– Horn-SAT
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The Constant Language:
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The Constant Language:
– Domain:

● {0}

– Constraint language:
● Relations of the form {(x=0),(x=y=0),(x=y=z=0),...}
● As well as the relation {(x≠0)}

– Solving is trivial:
● Set all variables to 0
● Test constraints

– If any fail, there is no solution
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Max-closed Languages:
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Max-closed Languages:
– Domain:

● A linearly-ordered set
– Given x and y in the set, either x>y or y>x

– Constraint language:
● Any max-closed relations on the domain
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Max-closed Languages:
– Max-closed relations are based on the 

function max(a,b)
● Expanded to tuples elementwise:

max((a
1
,a

2
),(b

1
,b

2
)) = (max(a

1
,b

1
),max(a

2
,b

2
))

e.g: max((3,7,2),(2,9,1)) = (3,9,2) = 
(max(3,2),max(7,9),max(2,1))

● With the function's domain closed:
The function can always operate on its own output

e.g: (1,2) and (3,4) in the domain implies (2,4) = 
max((1,2),(3,4)) in the domain
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Horn-SAT:
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Horn-SAT:
– Domain:

● {0,1} (Boolean)

– Constraint language:
● Disjunctive constraints over variables; exactly one 

element per clause unnegated, the rest negated
– e.g: (x  ∨ y  ∨ z  ∨ w)

– Solvable in P by unit resolution
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● In order to define the expressiveness of a 
constraint language, we need to begin 
from the bottom and build our way up.

● Just because something is not strictly in the 
language doesn't mean it can't be 
expressed with the given constraints.

● We therefore will define gadgets, to be 
used in the construction of any 
expressible relation.
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● Gadget Example
– Consider the problem (with domain {r,g,b})

– What is the relation between A and B?
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● Gadget Example
– Consider the problem (with domain {r,g,b})

– What is the relation between A and B?

● The relation is A=B
– The problem is a gadget for =

– (A,B) is its construction site
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● Gadgets are CSPs that extend a language 
outside of what it strictly contains

● From the previous gadget, if a language 
contains the constraint A≠B, it can also 
express the constraint A=B

● But imagine trying to make new gadgets
– Try to make A+B=0 out of A≠B

– or prove that you can't

● Trial and error isn't going to work, so...

Zion Schell Tractable Constraint Languages - 27 4-15-13

Constraint Languages: Expressiveness



● Let us define the kth-order universal 
gadget of a constraint language Q

– We'll call it U
k
(Q)

● A gadget is only a CSP, so we can define it 
 the same way:
– Domain

– Variables

– Constraints
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The kth-order universal gadget U
k
(Q)

● Domain of U
k
(Q)

– The same domain as all problems in the 
relational subclass of Q

– e.g:
● Q = {(A=0),(A=1),(A=2)}

– Domain(U
k
(Q)) = {0,1,2}

● Q = {(A∨B)}
– Domain(U

k
(Q)) = {0,1}
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The kth-order universal gadget U
k
(Q)

● Variables of U
k
(Q)

– One variable for each k-tuple composed of 
elements in the domain of U

k
(Q)

– e.g:
● k=2 and Domain(U

k
(Q)) = {0,1,2}

– Variables of U
k
(Q) = 

{v00,v01,v02,v10,v11,v12,v20,v21,v22}
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The kth-order universal gadget U
k
(Q)

● Variables of U
k
(Q)

– name of a variable
● the tuple to which it corresponds
● e.g:  name of v01 is (0,1)
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The kth-order universal gadget U
k
(Q)

● Variables of U
k
(Q)

– name relation of a list of variables
● defined elementwise by variable names 
● e.g: (v02,v01,v10,v22) → {(0,0,1,2),(2,1,0,2)}
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The kth-order universal gadget U
k
(Q)

● Relations of U
k
(Q)

– For each relation R in Q
● Apply R to a tuple of variables in U

k
(Q) if and only 

if the name relation of the tuple is a subset of R

– In other words, find all tuples of variables so if 
you write them vertically, the rows spell out 
some of the tuples of R
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● This is a horribly strange definition.

● We will therefore derive and show U
1
(Q), 

U
2
(Q) and U

3
(Q) for Q = {A B,⊕ ¬A}

– A B being the “xor” relation⊕
● (A,B) in {(0,1),(1,0)} satisfies the constraint

– ¬A being the “not” relation
● (A) in {(0)} satisfies the constraint

– Domain(U
k
(Q)) is Boolean
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U
1
(Q):

– Variables: 1-tuples of domain elements
● {v0,v1}

– Constraints:
●  ⊕ matches (v0,v1) and (v1,v0)

– i.e: name relation of (v0,v1) is {(0,1)}
● ¬ matches (v0)

– i.e: name relation of (v0) is {(0)}
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U
1
(Q):
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U
2
(Q):

– Variables: 2-tuples of domain elements
● {v00, v01, v10, v11}

– Constraints:
●  ⊕ matches (v00,v11),(v01,v10),(v10,v01),

(v11,v00)
– name relation of (v00,v11) is {(0,1),(0,1)}, etc.

● ¬ matches (v00)
– name relation of (v00) is {(0),(0)}
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U
2
(Q):
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U
3
(Q):

– Variables: 3-tuples of domain elements
● {v000, v001, v010, v011, v100, v101, v110, v111}

– Constraints:
●  ⊕ matches (v000,v111),(v001,v110),(v010,v101),

(v011,v100),(v100,v011),(v101,v010),
(v110,v001),(v111,v000)
– name relation of (v001,v110) is {(0,1),(0,1),(1,0)}, etc.

● ¬ matches (v000)
– name relation of (v000) is {(0),(0),(0)}
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U
3
(Q):
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And here's where the magic happens:
– Theorem 11.1 (Cohen, Gyssens, Jeavons, 1996)

● Let Q be a constraint language over a domain D
● Let R be a relation over D
● Let k be the number of supports in R

● Let L
R
 be any list of variables in U

k
(Q) whose 

name relation is R
● Then,

– either U
k
(Q) expresses R as a gadget with construction 

site L
R
,

– or R is not expressible in Q
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Example application:
– Is it possible to express (A B) with the ⇒

constraint language Q = {A B,¬A}?⊕
– (A B) formally:⇒

(A,B) in {(0,0),(0,1),(1,1)} satisfies the constraint

– (A B)⇒  has three supports, so we use U
3
(Q)
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U
3
(Q) revisited:

– Looking for a pair of variables with name 
relation a subset of {(0,0),(0,1),(1,1)}
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U
3
(Q) revisited:

– Looking for a pair of variables with name 
relation a subset of {(0,0),(0,1),(1,1)}

– Sample names would be ((0,0,1),(0,1,1)), 
((1,0,0),(1,0,1))
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U
3
(Q) revisited:

– Looking for a pair of variables with name 
relation a subset of {(0,0),(0,1),(1,1)}

– Sample names would be ((0,0,1),(0,1,1)), 
((1,0,0),(1,0,1))

(v100,v101) or

(v010,v011) work
(among others)
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U
3
(Q) revisited:

– If we treat U
3
(Q) as a gadget with construction 

site (v100,v101), what relation is formed?
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U
3
(Q) revisited:

– If we treat U
3
(Q) as a gadget with construction 

site (v100,v101), what relation is formed?
● {(0,0),(0,1),(1,0),(1,1)} are all viable pairs
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U
3
(Q) revisited:

– The gadget does not form the relation (A B)⇒
– This is proof that it is not possible to form 

(A B) from {A B,¬A}⇒ ⊕

● The proof of Theorem 11.1 is esoteric and 
whimsical

● Read it if you want to simulate a hangover 
(without the night out beforehand)
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● The universal gadget is not the smallest 
gadget for all applications; for instance:

  VS
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● The size of the universal gadget U
k
(Q) with 

domain size d is dk

● Finding better gadgets in given constraint 
languages is a open avenue of research

● U
k
(Q) also can be used to determine the 

tractability of Q
● The specific method even suggests 

algorithms for problems in Q
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● U
k
(Q) also can be used to determine the 

tractability of Q
● The specific method even suggests 

algorithms for problems in Q
● Let's start with some an example/theorem.
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Theorem 11.2 (Schaefer 1978)

Let Q be a boolean constraint language
– Q is tractable if and only if for each R in Q:

● R allows (0,0,...,0) or (1,1,...,1)
● R allows disjunctive clauses with at most one 

negated variable (anti-Horn-clauses)
● R allows disjunctive clauses with at most one 

nonnegated variable (Horn-clauses)
● R allows disjunctive clauses with at most two 

variables per clause (2-SAT)
● R is a set of solutions to linear equations on {0,1}
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● By Theorem 11.2, we know exactly when a 
constraint language on a domain of size 2 
is tractable

● Not true with other domain sizes
● We do have some conditions for tractability
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● A necessary condition for a tractable 
constraint language depends on the 
following definitions:
– k-ary operation

● idempotent k-ary operation
● essentially-unary k-ary operation 

– projection
● semi-projection
● majority operation 
● affine operation 
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● A k-ary operation from Dk to D maps all k-
tuples of elements of D to members of D
– e.g: addition function (k=2, D= )ℕ

● +(a,b) maps (a,b) to a+b

– e.g: maximum function (k=2, D= )ℝ
● max(a,b) maps (a,b) to a or to b

– e.g: 3-disjunction function (k=3, D={0,1})
● 3OR(a,b,c) maps (a,b,c) to a b c∨ ∨

Zion Schell Tractable Constraint Languages - 55 4-15-13

Constraint Languages: Complexity



● Idempotent k-ary operation
– Maps (x,x,...,x) to x for all x

● e.g: max(a,a) = a 

● Essentially-unary k-ary operation 

– Maps (x
1
,x

2
,...,x

k
) to f(x

i
) for some f(x) and i

– A projection is a essentially-unary k-ary 
operation with f(x) = x
● e.g: π

b
(a,b) = b
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● Semi-projection

– Maps (x
1
,x

2
,...,x

k
) to x

i
 in only some cases

● requires k≥3
● examples are very contrived

● Majority operation
– Maps (a,b,c) to its most common element

● Affine operation
– Maps (a,b,c) to a+b-1+c

● where ⟨D,+  is an Abelian group⟩
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● Abelian group is a pair D,+⟨ ⟩
– D is a domain

● Contains an identity element i
– a + i = a

● Every element a has an inverse a-1 under +
– a + a-1 = i 

– + is an operation on D2 such that
● D is closed under +
● + is associative
● + is commutative
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● One final definition:

– Let s be a solution to U
k
(Q)

– Let the k-ary operation ŝ associated with s 
be defined as follows:
● The value of ŝ(x) is the value assigned to the 

variable with name x in the solution s.
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● Example: Q = {A B,⊕ ¬A}

– There exists a solution s to U
3
(Q) as follows:

v111 = 1; v110 = 1; v101 = 1; v100 = 0;

v011 = 1; v010 = 0; v001 = 0; v000 = 0

– ŝ(1,1,1) = 1, ŝ(1,0,1) = 1, ŝ(0,1,0) = 0, etc.
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● Why would anyone care about the specific 
types of k-ary operations associated with 
solutions of kth-order universal gadgets to 
constraint languages?

● Theorem 11.4 

Assuming P≠NP, any tractable constraint 
language over a finite domain must have a 
solution to its universal gadget associated 
with either a constant operation, a majority 
operation, an idempotent binary operation, 
an affine operation, or a semi-projection.
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● Example: Q = {A B,⊕ ¬A}
– From:

v111 = 1; v110 = 1; v101 = 1; v100 = 0;

v011 = 1; v010 = 0; v001 = 0; v000 = 0

– We get:
ŝ(1,1,1) = ŝ(1,1,0) = ŝ(1,0,1) = ŝ(0,1,1) = 1

ŝ(1,0,0) = ŝ(0,1,0) = ŝ(0,0,1) = ŝ(0,0,0) = 0

– ŝ is a majority operation!

– Q is therefore not intractable
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Corollary to Theorem 11.4

– If all solutions to U
|D|

(Q) are essentially unary, 

then Q is NP-complete

– This gets disgusting...
● U

|D|
(Q) has 2|D| = |D||D| variables, and 

combinatorially manyconstraints
– This is the only time I have ever seen tetration used in 

an actual formula (and I studied mathematics as an 
undergrad)

● Attempting an exhaustive solution is imbecilic
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● Some sufficient conditions for a tractable 
constraint language depend on the 
following definitions:
– A relation R allows an operation w if w is 

associated with a solution to U
k
({R})

– inv(w) is the set of R such that R allows w
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Example: Constant Operations
– Let w be any constant operation on D

● w(x)=C for all x

– Let Q = inv(w)
● all relations having only one support

– Q is always tractable:
● Each constraint determines all variables in its 

scope
● If two constraints disagree, no solution exists

– The constant language is an example
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Example: Semilattice Operations
– Let + be any operation which is idempotent, 

commutative, and associative
● x+x = x;  x+y = y+x;  (x+y)+z = x+(y+z)

– Let Q = inv(+)

– Q is always tractable; the following procedure 
finds a solution:
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Example: Semilattice Operations
– Establish GAC on the problem

– If any domain is empty, no solution exists

– Otherwise, return the solution where for each 
variable v with domain d={d

1
,d

2
,...,d

k
}, the 

value of v is d
1
+d

2
+...+d

k

– An example of this is Horn-SAT
● The operation “and” is a semilattice operator 

found as a solution to U
2
(Horn-clause)

x x = x;  x y = y x;  (x y) z = x (y z)∧ ∧ ∧ ∧ ∧ ∧ ∧
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Example: Near-unanimity Operations
– Let w be any k-ary operation which requires 

near-unanimity
● all arguments but one must agree, returns the 

most common
● e.g: the 3-majority operation: w(x,x,y) = w(x,y,x) = 

w(y,x,x) = x for all x,y

– 2-SAT falls into this category:
● w(a,b,c) = (b=c)?b:a can be found in U

3
(2-SAT)
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● There are other examples, but the basic 
idea is this:
– Even though the specifics of constraint 

languages vary significantly, the operations 
associated with solutions to their universal 
gadgets determine quite effectively whether 
or not a given language is tractable.
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● Necessary and sufficient conditions for 
tractability are unknown for most cases

● With domain size 2, we have solved it 
completely, as Theorem 11.2

● In the general case for higher domain size, 
it isn't known

● If necessary and sufficient conditions could 
be determined, this would prove or 
disprove P = NP
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● Relational Subclasses
– specific sets of CSPs determined by their 

constraint language

● Structural Subclasses
– specific sets of CSPs determined by 

properties of their hypergraphs
● e.g:  requiring a tree structure, requiring clique 

subgraphs, or any of the other elements 
discussed in previous classes

But this is not all...
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● Hybrid Subclasses
– specific sets of CSPs determined by their 

constraint languages AND properties of their 
hypergraphs

● There seems to be no particular heuristics 
for the tractability of hybrid subclasses

● An example follows:
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● Given any constraint problem C with 
domain size d and maximum constraint 
arity r, then if C is strong d(r+1)-
consistent, it is globally consistent.

● This subclass is tractable and dependent 
both on the language (domain size and 
constraint arity) and structure 
(consistency requirements).
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● Constraint languages are sets of relations.
● Gadgets can be used to extend constraint 

languages beyond the strict relations 
present in their definition.

● The expressiveness of constraint 
languages can be readily defined.

● The tractability of constraint languages can 
be determined to some extent, but the 
general case (domain size greater than 2) 
remains unknown.
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