Tractable Constraint Languages

Zion Schell

Based on Chapter 11 of Rina Dechter's Constraint Processing by David Cohen and Peter Jeavons

Zion Schell

Tractable Constraint Languages - 1

Disclaimer

- This chapter is a bit weird
 - It lacks a central thread of ideas
 - It lacks a unifying thesis
 - It doesn't present clear derivations of many of its theorems or techniques
- I'm not going to teach this chapter
- I will present this chapter
- I hope to acquaint you with this content, not impart true understanding of it

Zion Schell

Tractable Constraint Languages - 2

<u>Outline</u>

- Introduction
- Basic Definitions
- Constraint Languages
 - Expressiveness of Constraint Languages
 - Complexity of Constraint Languages
 - Hybrid Tractability
 - Review

Zion Schell

Tractable Constraint Languages - 4

- **Constraint solvers** allow you to define and solve constraint networks.
- They do this by defining some set of basic constraints to be applied to variables.
- This set of constraint primitives can be called the **constraint language** of the solver.

- As a solver's constraint language increases in complexity, its expressiveness (the complexity of constraint satisfaction problems that it can describe) increases.
- On the other hand, a more complex constraint language requires more complex algorithms, and the solver's performance decreases accordingly.

- It is therefore necessary to choose a balance between *performance* and *expressiveness* when designing a constraint language.
- This chapter focuses on the design of constraint languages that choose to be less expressive, but that have tractable performance.

• A constraint language is a set of relations.

- *e.g*: { $x=y, x\neq y, x>y$ } or {x+y=z, x>y, x=3}

 The relational subclass of a constraint language is the set of all CSP instances that only use relations from the language.

Tractability:

- Tractable Constraint Language
 - A polynomial algorithm exists to solve all problems in its relational subclass
- Tractable Relation
 - The constraint language consisting of only the relation is tractable

Tractability seems to be heavily determined by *domain size* and *constraint arity*

- 2SAT (tractable)
 - domain size 2 and constraint arity 2
- Graph 3-coloring (intractable)
 - domain size 3 and constraint arity 2
- 3SAT (intractable)
- domain size 2 and constraint arity 3 However...

An Example Constraint Language: CHiP

An Example Constraint Language: CHiP

- Constraint Handling in Prolog
- Domain
 - ℕ (natural numbers)
- Constraint Language
 - Domain constraints
 - Arithmetic constraints
 - Compound arithmetic constraints

An Example Constraint Language: CHiP

- 1.) Domain constraints (unary)
 - $x \ge a$; $x \le a$
- 2.) Arithmetic constraints (unary or binary)
 - $ax \neq b$; ax = by + c; $ax \leq by + c$; $ax \geq by + c$

3.) Compound arithmetic constraints (*n*-ary)

- $a_1 x_1 + a_2 x_2 + \dots + a_n x_n \ge by + c$
- $ax_1x_2...x_n \ge by + c$
- $(a_1 x_1 \ge b_1) \lor (a_2 x_2 \ge b_2) \lor \dots \lor (a_n x_n \ge b_n) \lor (ay \le b)$

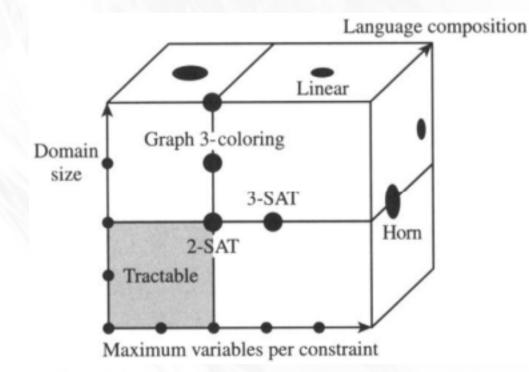
Zion Schell

Tractable Constraint Languages - 13

- CHiP is actually tractable (!)
 - Enforcing arc-consistency allows backtrackfree solution generation
- CHiP breaks both previous heuristics:
 - Domain ℕ is infinite
 - Compound arithmetic constraints can have arbitrary arity
- More to tractability than just those two factors

Zion Schell

The composition of constraint languages somehow determines their tractability



Zion Schell

Tractable Constraint Languages - 15

More tractable languages:

- The Constant Language
- Max-closed Languages
- Horn-SAT

The Constant Language:

Zion Schell

Tractable Constraint Languages - 17

The Constant Language:

- Domain:
 - {0}
- Constraint language:
 - Relations of the form {(*x*=*0*),(*x*=*y*=*0*),(*x*=*y*=*z*=*0*),...}
 - As well as the relation $\{(x \neq 0)\}$
- Solving is trivial:
 - Set all variables to 0
 - Test constraints
 - If any fail, there is no solution

Zion Schell

Tractable Constraint Languages - 18

Max-closed Languages:

Max-closed Languages:

- Domain:

- A linearly-ordered set
 - Given x and y in the set, either x>y or y>x

- Constraint language:

Any max-closed relations on the domain

Max-closed Languages:

- Max-closed relations are based on the function max(a,b)
 - Expanded to tuples elementwise: $max((a_1,a_2),(b_1,b_2)) = (max(a_1,b_1),max(a_2,b_2))$ *e.g*: max((3,7,2),(2,9,1)) = (3,9,2) = (max(3,2),max(7,9),max(2,1))
 - With the function's domain *closed*:

The function can always operate on its own output *e.g*: (1,2) and (3,4) in the domain implies (2,4) = max((1,2),(3,4)) in the domain

Zion Schell

Tractable Constraint Languages - 21

Horn-SAT:

Zion Schell

Tractable Constraint Languages - 22

Horn-SAT:

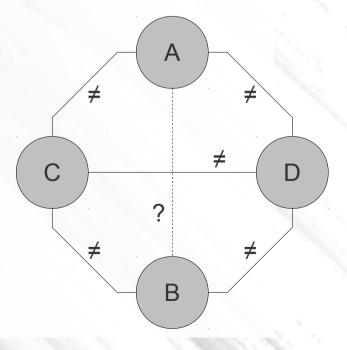
- Domain:
 - {0,1} (Boolean)
- Constraint language:
 - Disjunctive constraints over variables; exactly one element per clause unnegated, the rest negated

 $- e.g: (x \vee \overline{y} \vee \overline{z} \vee \overline{w})$

- Solvable in *P* by unit resolution

- In order to define the expressiveness of a constraint language, we need to begin from the bottom and build our way up.
- Just because something is not strictly in the language doesn't mean it can't be expressed with the given constraints.
- We therefore will define **gadgets**, to be used in the construction of any expressible relation.

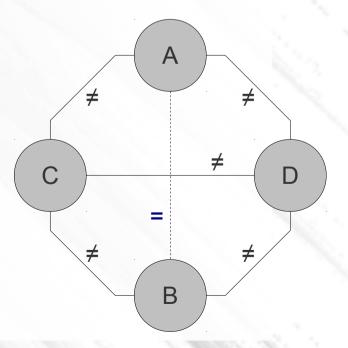
- Gadget Example
 - Consider the problem (with domain {*r*,*g*,*b*})
 - What is the relation between A and B?



Zion Schell

Tractable Constraint Languages - 25

- Gadget Example
 - Consider the problem (with domain {*r*,*g*,*b*})
 - What is the relation between A and B?
- The relation is A=B
 - The problem is a gadget for =
 - (A,B) is its construction site



- Gadgets are CSPs that extend a language outside of what it strictly contains
- From the previous gadget, if a language contains the constraint A≠B, it can also express the constraint A=B
- But imagine trying to make new gadgets
 - Try to make A+B=0 out of A≠B
 - or prove that you can't
- Trial and error isn't going to work, so...

Zion Schell

Tractable Constraint Languages - 27

- Let us define the kth-order universal gadget of a constraint language Q
 We'll call it U_µ(Q)
- A gadget is only a CSP, so we can define it the same way:
 - Domain
 - Variables
 - Constraints

- The *k*th-order universal gadget $U_k(Q)$
- Domain of $U_{k}(Q)$
 - The same domain as all problems in the relational subclass of Q

– *e.g*:

- Q = {(A=0), (A=1), (A=2)}
 - Domain $(U_k(Q)) = \{0, 1, 2\}$
- $Q = \{(A v B)\}$
 - Domain $(U_k(Q)) = \{0,1\}$

Zion Schell

Tractable Constraint Languages - 29

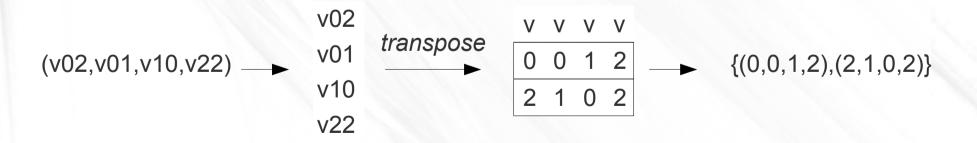
- The *k*th-order universal gadget $U_k(Q)$
- Variables of $U_{k}(Q)$
 - One variable for each k-tuple composed of elements in the domain of U₁(Q)
 - *e.g*:
 - k=2 and Domain($U_k(Q)$) = {0,1,2}
 - Variables of U_k(Q) = {v00,v01,v02,v10,v11,v12,v20,v21,v22}

Zion Schell

Tractable Constraint Languages - 30

- The *k*th-order universal gadget $U_k(Q)$
- Variables of $U_{k}(Q)$
 - name of a variable
 - the tuple to which it corresponds
 - *e.g*: name of v01 is (0,1)

- The *k*th-order universal gadget $U_k(Q)$
- Variables of $U_{k}(Q)$
 - name relation of a list of variables
 - defined elementwise by variable names
 - e.g: $(v02,v01,v10,v22) \rightarrow \{(0,0,1,2),(2,1,0,2)\}$



Zion Schell

Tractable Constraint Languages - 32

- The *k*th-order universal gadget $U_k(Q)$
- Relations of $U_{k}(Q)$
 - For each relation R in Q
 - Apply R to a tuple of variables in U_κ(Q) if and only if the name relation of the tuple is a subset of R
 - In other words, find all tuples of variables so if you write them vertically, the rows spell out some of the tuples of R

- This is a horribly strange definition.
- We will therefore derive and show $U_1(Q)$, $U_2(Q)$ and $U_3(Q)$ for $Q = \{A \oplus B, \neg A\}$
 - A⊕B being the "xor" relation
 - (A,B) in {(0,1),(1,0)} satisfies the constraint
 - ¬A being the "not" relation
 - (A) in {(0)} satisfies the constraint
 - Domain($U_k(Q)$) is Boolean

U₁(Q):

- Variables: 1-tuples of domain elements
 - {v0,v1}
- Constraints:
 - ⊕ matches (v0,v1) and (v1,v0)
 - *i.e*: name relation of (v0,v1) is $\{(0,1)\}$
 - ¬ matches (v0)
 - *i.e:* name relation of (v0) is {(0)}

U₁(Q):

Zion Schell

Tractable Constraint Languages - 36

U₂(Q):

- Variables: 2-tuples of domain elements
 - {v00, v01, v10, v11}
- Constraints:
 - - name relation of (v00,v11) is {(0,1),(0,1)}, etc.
 - ¬ matches (v00)
 - name relation of (v00) is {(0),(0)}

Tractable Constraint Languages - 37

U₂(Q):

Zion Schell

Tractable Constraint Languages - 38

U₃(Q):

- Variables: 3-tuples of domain elements
 - {v000, v001, v010, v011, v100, v101, v110, v111}

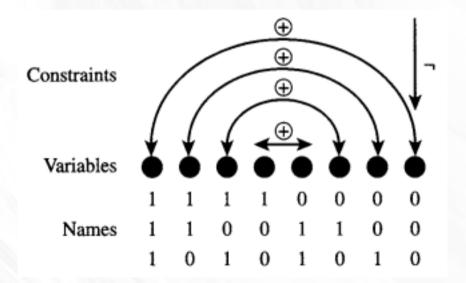
- Constraints:

- ★ matches (v000,v111),(v001,v110),(v010,v101),
 (v011,v100),(v100,v011),(v101,v010),
 (v110,v001),(v111,v000)
 - name relation of (v001,v110) is {(0,1),(0,1),(1,0)}, etc.
- ¬ matches (v000)

- name relation of (v000) is {(0),(0),(0)}

Tractable Constraint Languages - 39

U₃(Q):



Zion Schell

Tractable Constraint Languages - 40

And here's where the magic happens:

- Theorem 11.1 (Cohen, Gyssens, Jeavons, 1996)
 - Let Q be a constraint language over a domain D
 - Let R be a relation over D
 - Let k be the number of supports in R
 - Let L_R be any list of variables in U_k(Q) whose name relation is R
 - Then,
 - either $U_k(Q)$ expresses *R* as a gadget with construction site L_{R} ,
 - or *R* is not expressible in *Q*

Zion Schell

Tractable Constraint Languages - 41

Example application:

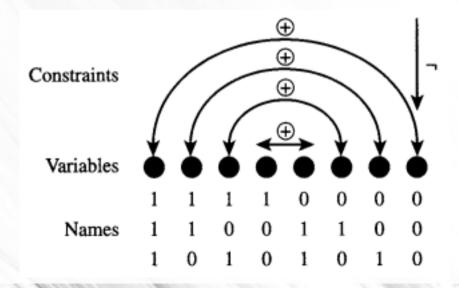
- Is it possible to express (A⇒B) with the constraint language Q = {A⊕B,¬A}?
- (A⇒B) formally:

(A,B) in $\{(0,0),(0,1),(1,1)\}$ satisfies the constraint

- (A \Rightarrow B) has three supports, so we use U₃(Q)

$U_{3}(Q)$ revisited:

 Looking for a pair of variables with name relation a subset of {(0,0),(0,1),(1,1)}

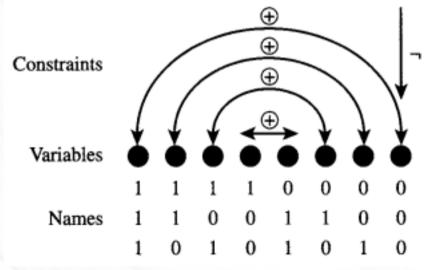


Zion Schell

Tractable Constraint Languages - 43

$U_{3}(Q)$ revisited:

- Looking for a pair of variables with name relation a subset of {(0,0),(0,1),(1,1)}
- Sample names would be ((0,0,1),(0,1,1)), ((1,0,0),(1,0,1))



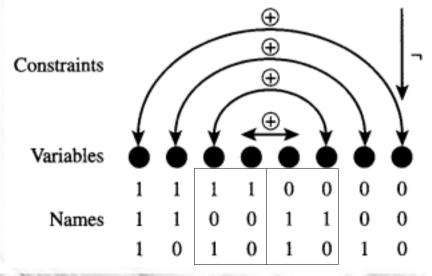
Zion Schell

Tractable Constraint Languages - 44

$U_{3}(Q)$ revisited:

- Looking for a pair of variables with name relation a subset of {(0,0),(0,1),(1,1)}
- Sample names would be ((0,0,1),(0,1,1)), ((1,0,0),(1,0,1))

(v100,v101) or (v010,v011) work (among others)

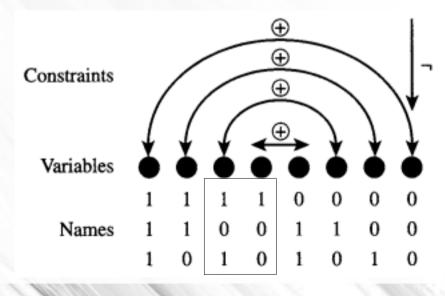


Zion Schell

Tractable Constraint Languages - 45

$U_{3}(Q)$ revisited:

- If we treat $U_{3}(Q)$ as a gadget with construction site (v100,v101), what relation is formed?

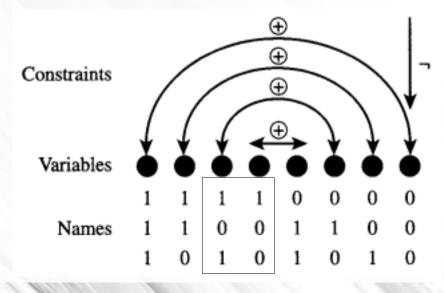


Zion Schell

Tractable Constraint Languages - 46

$U_{3}(Q)$ revisited:

- If we treat U₃(Q) as a gadget with construction site (v100,v101), what relation is formed?
 - {(0,0),(0,1),(1,0),(1,1)} are all viable pairs



Zion Schell

Tractable Constraint Languages - 47

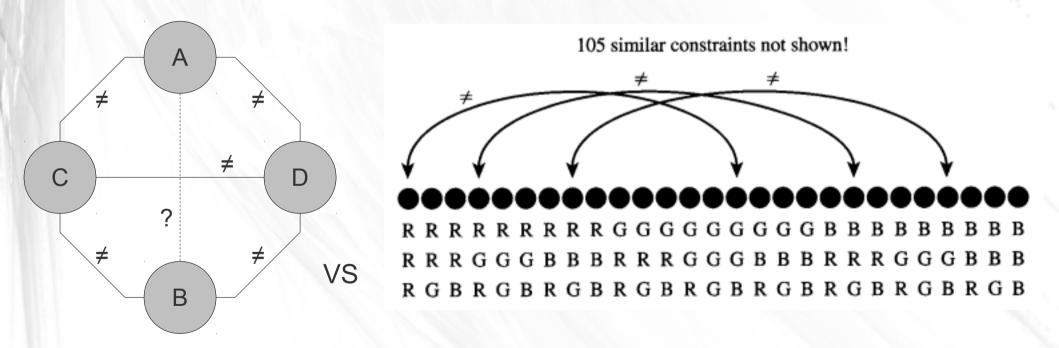
$U_{3}(Q)$ revisited:

- The gadget does not form the relation $(A \Rightarrow B)$
- This is proof that it is not possible to form
 (A⇒B) from {A⊕B,¬A}
- The proof of Theorem 11.1 is esoteric and whimsical
- Read it if you want to simulate a hangover (without the night out beforehand)

Zion Schell

Tractable Constraint Languages - 48

• The universal gadget is not the smallest gadget for all applications; for instance:



Zion Schell

Tractable Constraint Languages - 49

- The size of the universal gadget U_k(Q) with domain size *d* is *d^k*
- Finding better gadgets in given constraint languages is a open avenue of research
- U_k(Q) also can be used to determine the tractability of Q
- The specific method even suggests
 algorithms for problems in Q

- U_k(Q) also can be used to determine the tractability of Q
- The specific method even suggests
 algorithms for problems in Q
- Let's start with some an example/theorem.

Theorem 11.2 (Schaefer 1978)

Let Q be a boolean constraint language

- Q is tractable **if and only if** for each R in Q:

• *R* allows (0,0,...,0) or (1,1,...,1)

- *R* allows disjunctive clauses with at most one negated variable (anti-Horn-clauses)
- *R* allows disjunctive clauses with at most one nonnegated variable (Horn-clauses)
- *R* allows disjunctive clauses with at most two variables per clause (2-SAT)
- *R* is a set of solutions to linear equations on {0,1}

Zion Schell

Tractable Constraint Languages - 52

- By Theorem 11.2, we know exactly when a constraint language on a domain of size 2 is tractable
- Not true with other domain sizes
- We do have some conditions for tractability

- A necessary condition for a tractable constraint language depends on the following definitions:
 - k-ary operation
 - idempotent k-ary operation
 - essentially-unary k-ary operation
 - projection
 - semi-projection
 - majority operation
 - affine operation

Tractable Constraint Languages - 54

- A k-ary operation from D^k to D maps all ktuples of elements of D to members of D
 - *e.g.* addition function (k=2, D= \mathbb{N})
 - +(*a*,*b*) maps (*a*,*b*) to *a*+*b*
 - *e.g:* maximum function (k=2, D= \mathbb{R})
 - max(a,b) maps (a,b) to a or to b
 - *e.g:* 3-disjunction function (k=3, D={0,1})
 - 3OR(a,b,c) maps (a,b,c) to avbvc

- Idempotent k-ary operation
 - Maps (x, x, ..., x) to x for all x
 - e.g: max(a,a) = a
- Essentially-unary k-ary operation
 - Maps (x_1, x_2, \dots, x_k) to $f(x_i)$ for some f(x) and i
 - A projection is a essentially-unary k-ary operation with f(x) = x
 - e.g: $\pi_{b}(a,b) = b$

Zion Schell

Tractable Constraint Languages - 56

- Semi-projection
 - Maps (x_1, x_2, \dots, x_k) to x_i in only some cases
 - requires k≥3
 - examples are very contrived
- Majority operation
 - Maps (a,b,c) to its most common element

Affine operation

- Maps (a,b,c) to $a+b^{-1}+c$
 - where $\langle D, + \rangle$ is an Abelian group

Zion Schell

Tractable Constraint Languages - 57

- Abelian group is a pair (D,+)
 - D is a domain
 - Contains an *identity* element *i*

- a + i = a

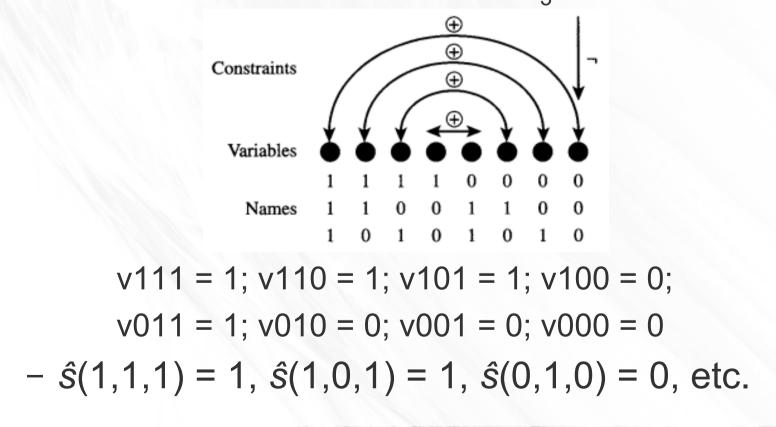
- Every element a has an inverse a⁻¹ under +
 a + a⁻¹ = i
- + is an operation on D² such that
 - D is *closed* under +
 - + is associative
 - + is commutative

Zion Schell

Tractable Constraint Languages - 58

- One final definition:
 - Let s be a solution to $U_k(Q)$
 - Let the k-ary operation ŝ associated with s be defined as follows:
 - The value of $\hat{s}(x)$ is the value assigned to the variable with name x in the solution s.

- Example: $Q = \{A \oplus B, \neg A\}$
 - There exists a solution s to $U_3(Q)$ as follows:



Zion Schell

Tractable Constraint Languages - 60

- Why would anyone care about the specific types of k-ary operations associated with solutions of kth-order universal gadgets to constraint languages?
- Theorem 11.4

Assuming P≠NP, any tractable constraint language over a finite domain must have a solution to its universal gadget associated with either a *constant* operation, a *majority* operation, an *idempotent* binary operation, an *affine* operation, or a *semi-projection*.

Zion Schell

Tractable Constraint Languages - 61

• Example: $Q = \{A \oplus B, \neg A\}$

- From:

v111 = 1; v110 = 1; v101 = 1; v100 = 0;

v011 = 1; v010 = 0; v001 = 0; v000 = 0

- We get:

 $\hat{s}(1,1,1) = \hat{s}(1,1,0) = \hat{s}(1,0,1) = \hat{s}(0,1,1) = 1$

 $\hat{s}(1,0,0) = \hat{s}(0,1,0) = \hat{s}(0,0,1) = \hat{s}(0,0,0) = 0$

$-\hat{s}$ is a majority operation!

- Q is therefore not intractable

Zion Schell

Corollary to Theorem 11.4

- If all solutions to $U_{|D|}(Q)$ are essentially unary, then Q is NP-complete
- This gets disgusting...
 - $U_{|D|}(Q)$ has $|D| = |D|^{|D|}$ variables, and combinatorially manyconstraints
 - This is the only time I have ever seen tetration used in an actual formula (and I studied mathematics as an undergrad)
 - Attempting an exhaustive solution is imbecilic

- Some sufficient conditions for a tractable constraint language depend on the following definitions:
 - A relation R allows an operation w if w is associated with a solution to U_k({R})
 - *inv(w)* is the set of *R* such that *R* allows *w*

Example: Constant Operations

- Let w be any constant operation on D
 - *w*(*x*)=*C* for all *x*
- Let Q = inv(w)
 - all relations having only one support
- Q is always tractable:
 - Each constraint determines all variables in its scope
 - If two constraints disagree, no solution exists
- The constant language is an example

Tractable Constraint Languages - 65

Example: Semilattice Operations

 Let + be any operation which is idempotent, commutative, and associative

•
$$x+x = x$$
; $x+y = y+x$; $(x+y)+z = x+(y+z)$

$$-$$
 Let Q = *inv*(+)

Q is always tractable; the following procedure finds a solution:

Zion Schell

Tractable Constraint Languages - 66

Example: Semilattice Operations

- Establish GAC on the problem
- If any domain is empty, no solution exists
- Otherwise, return the solution where for each variable v with domain $d = \{d_1, d_2, ..., d_k\}$, the value of v is $d_1 + d_2 + ... + d_k$
- An example of this is Horn-SAT
 - The operation "and" is a semilattice operator found as a solution to U₂(Horn-clause)

 $x \wedge x = x; x \wedge y = y \wedge x; (x \wedge y) \wedge z = x \wedge (y \wedge z)$

Zion Schell

Tractable Constraint Languages - 67

Example: Near-unanimity Operations

- Let w be any k-ary operation which requires near-unanimity
 - all arguments but one must agree, returns the most common
 - e.g: the 3-majority operation: w(x,x,y) = w(x,y,x) = w(y,x,x) = x for all x,y
- 2-SAT falls into this category:
 - w(a,b,c) = (b=c)?b:a can be found in $U_3(2-SAT)$

Tractable Constraint Languages - 68

- There are other examples, but the basic idea is this:
 - Even though the specifics of constraint languages vary significantly, the operations associated with solutions to their universal gadgets determine quite effectively whether or not a given language is tractable.

- Necessary and sufficient conditions for tractability are unknown for most cases
- With domain size 2, we have solved it completely, as Theorem 11.2
- In the general case for higher domain size, it isn't known
- If necessary and sufficient conditions could be determined, this would prove or disprove P = NP

Zion Schell

Constraint Languages: Hybridization

- Relational Subclasses
 - specific sets of CSPs determined by their constraint language
- Structural Subclasses
 - specific sets of CSPs determined by properties of their hypergraphs
 - *e.g*: requiring a tree structure, requiring clique subgraphs, or any of the other elements discussed in previous classes

But this is not all...

Zion Schell

Tractable Constraint Languages - 71

Constraint Languages: Hybridization

- Hybrid Subclasses
 - specific sets of CSPs determined by their constraint languages AND properties of their hypergraphs
- There seems to be no particular heuristics for the tractability of hybrid subclasses

• An example follows:

Zion Schell

Tractable Constraint Languages - 72

Constraint Languages: Hybridization

- Given any constraint problem C with domain size d and maximum constraint arity r, then if C is strong d(r+1)consistent, it is globally consistent.
- This subclass is tractable and dependent both on the language (domain size and constraint arity) and structure (consistency requirements).

Constraint Languages: Summary

- Constraint languages are sets of relations.
- Gadgets can be used to extend constraint languages beyond the strict relations present in their definition.
- The expressiveness of constraint languages can be readily defined.
- The tractability of constraint languages can be determined to some extent, but the general case (domain size greater than 2) remains unknown.

Zion Schell Tractable Constraint Languages - 74