
Tractable Constraint Languages

Zion Schell

Based on Chapter 11 of

Rina Dechter's Constraint Processing

by David Cohen and Peter Jeavons

Zion Schell Tractable Constraint Languages - 1 4-15-13

● This chapter is a bit weird
– It lacks a central thread of ideas

– It lacks a unifying thesis

– It doesn't present clear derivations of many of
its theorems or techniques

● I'm not going to teach this chapter
● I will present this chapter
● I hope to acquaint you with this content, not

impart true understanding of it

Zion Schell Tractable Constraint Languages - 2 4-15-13

Disclaimer

● Introduction
● Basic Definitions
● Constraint Languages

– Expressiveness of Constraint Languages

– Complexity of Constraint Languages

● Hybrid Tractability
● Review

Zion Schell Tractable Constraint Languages - 3 4-15-13

Outline

Zion Schell Tractable Constraint Languages - 4 4-15-13

Introduction

● Constraint solvers allow you to define and
solve constraint networks.

● They do this by defining some set of basic
constraints to be applied to variables.

● This set of constraint primitives can be
called the constraint language of the
solver.

Zion Schell Tractable Constraint Languages - 5 4-15-13

Introduction

● As a solver's constraint language increases
in complexity, its expressiveness (the
complexity of constraint satisfaction
problems that it can describe) increases.

● On the other hand, a more complex
constraint language requires more
complex algorithms, and the solver's
performance decreases accordingly.

Zion Schell Tractable Constraint Languages - 6 4-15-13

Introduction

● It is therefore necessary to choose a
balance between performance and
expressiveness when designing a
constraint language.

● This chapter focuses on the design of
constraint languages that choose to be
less expressive, but that have tractable
performance.

Zion Schell Tractable Constraint Languages - 7 4-15-13

Introduction

● A constraint language is a set of relations.
– e.g: {x=y, x≠y, x>y} or {x+y=z, x>y, x=3}

● The relational subclass of a constraint
language is the set of all CSP instances
that only use relations from the language.

Zion Schell Tractable Constraint Languages - 8 4-15-13

Constraint Languages

Tractability:
– Tractable Constraint Language

● A polynomial algorithm exists to solve all
problems in its relational subclass

– Tractable Relation
● The constraint language consisting of only the

relation is tractable

Zion Schell Tractable Constraint Languages - 9 4-15-13

Constraint Languages

Tractability seems to be heavily determined
by domain size and constraint arity
– 2SAT (tractable)

● domain size 2 and constraint arity 2

– Graph 3-coloring (intractable)
● domain size 3 and constraint arity 2

– 3SAT (intractable)
● domain size 2 and constraint arity 3

However...

Zion Schell Tractable Constraint Languages - 10 4-15-13

Constraint Languages

An Example Constraint Language: CHiP

Zion Schell Tractable Constraint Languages - 11 4-15-13

Constraint Languages

An Example Constraint Language: CHiP
– Constraint Handling in Prolog

– Domain
● ℕ (natural numbers)

– Constraint Language
● Domain constraints
● Arithmetic constraints
● Compound arithmetic constraints

Zion Schell Tractable Constraint Languages - 12 4-15-13

Constraint Languages

An Example Constraint Language: CHiP

1.) Domain constraints (unary)
● x ≥ a; x ≤ a

2.) Arithmetic constraints (unary or binary)
● ax ≠ b; ax = by + c; ax ≤ by + c; ax ≥ by + c

3.) Compound arithmetic constraints (n-ary)
● a

1
x

1
+ a

2
x

2
+ ... + a

n
x

n
 ≥ by + c

● ax
1
x

2
...x

n
 ≥ by + c

● (a
1
x

1
≥ b

1
) ∨ (a

2
x

2
≥ b

2
) ... ∨ ∨ (a

n
x

n
≥ b

n
) ∨ (ay ≤ b)

Zion Schell Tractable Constraint Languages - 13 4-15-13

Constraint Languages

● CHiP is actually tractable (!)
– Enforcing arc-consistency allows backtrack-

free solution generation

● CHiP breaks both previous heuristics:
– Domain is infiniteℕ
– Compound arithmetic constraints can have

arbitrary arity

● More to tractability than just those two
factors

Zion Schell Tractable Constraint Languages - 14 4-15-13

Constraint Languages

The composition of constraint languages
somehow determines their tractability

Zion Schell Tractable Constraint Languages - 15 4-15-13

Constraint Languages

More tractable languages:
– The Constant Language

– Max-closed Languages

– Horn-SAT

Zion Schell Tractable Constraint Languages - 16 4-15-13

Constraint Languages: Examples

The Constant Language:

Zion Schell Tractable Constraint Languages - 17 4-15-13

Constraint Languages: Examples

The Constant Language:
– Domain:

● {0}

– Constraint language:
● Relations of the form {(x=0),(x=y=0),(x=y=z=0),...}
● As well as the relation {(x≠0)}

– Solving is trivial:
● Set all variables to 0
● Test constraints

– If any fail, there is no solution

Zion Schell Tractable Constraint Languages - 18 4-15-13

Constraint Languages: Examples

Max-closed Languages:

Zion Schell Tractable Constraint Languages - 19 4-15-13

Constraint Languages: Examples

Max-closed Languages:
– Domain:

● A linearly-ordered set
– Given x and y in the set, either x>y or y>x

– Constraint language:
● Any max-closed relations on the domain

Zion Schell Tractable Constraint Languages - 20 4-15-13

Constraint Languages: Examples

Max-closed Languages:
– Max-closed relations are based on the

function max(a,b)
● Expanded to tuples elementwise:

max((a
1
,a

2
),(b

1
,b

2
)) = (max(a

1
,b

1
),max(a

2
,b

2
))

e.g: max((3,7,2),(2,9,1)) = (3,9,2) =
(max(3,2),max(7,9),max(2,1))

● With the function's domain closed:
The function can always operate on its own output

e.g: (1,2) and (3,4) in the domain implies (2,4) =
max((1,2),(3,4)) in the domain

Zion Schell Tractable Constraint Languages - 21 4-15-13

Constraint Languages: Examples

Horn-SAT:

Zion Schell Tractable Constraint Languages - 22 4-15-13

Constraint Languages: Examples

Horn-SAT:
– Domain:

● {0,1} (Boolean)

– Constraint language:
● Disjunctive constraints over variables; exactly one

element per clause unnegated, the rest negated
– e.g: (x ∨ y ∨ z ∨ w)

– Solvable in P by unit resolution

Zion Schell Tractable Constraint Languages - 23 4-15-13

Constraint Languages: Examples

● In order to define the expressiveness of a
constraint language, we need to begin
from the bottom and build our way up.

● Just because something is not strictly in the
language doesn't mean it can't be
expressed with the given constraints.

● We therefore will define gadgets, to be
used in the construction of any
expressible relation.

Zion Schell Tractable Constraint Languages - 24 4-15-13

Constraint Languages: Expressiveness

● Gadget Example
– Consider the problem (with domain {r,g,b})

– What is the relation between A and B?

Zion Schell Tractable Constraint Languages - 25 4-15-13

Constraint Languages: Expressiveness

C

B

A

D

≠≠

≠ ≠

≠

?

● Gadget Example
– Consider the problem (with domain {r,g,b})

– What is the relation between A and B?

● The relation is A=B
– The problem is a gadget for =

– (A,B) is its construction site

Zion Schell Tractable Constraint Languages - 26 4-15-13

Constraint Languages: Expressiveness

C

B

A

D

≠≠

≠ ≠

≠

=

● Gadgets are CSPs that extend a language
outside of what it strictly contains

● From the previous gadget, if a language
contains the constraint A≠B, it can also
express the constraint A=B

● But imagine trying to make new gadgets
– Try to make A+B=0 out of A≠B

– or prove that you can't

● Trial and error isn't going to work, so...

Zion Schell Tractable Constraint Languages - 27 4-15-13

Constraint Languages: Expressiveness

● Let us define the kth-order universal
gadget of a constraint language Q

– We'll call it U
k
(Q)

● A gadget is only a CSP, so we can define it
 the same way:
– Domain

– Variables

– Constraints

Zion Schell Tractable Constraint Languages - 28 4-15-13

Constraint Languages: Expressiveness

The kth-order universal gadget U
k
(Q)

● Domain of U
k
(Q)

– The same domain as all problems in the
relational subclass of Q

– e.g:
● Q = {(A=0),(A=1),(A=2)}

– Domain(U
k
(Q)) = {0,1,2}

● Q = {(A∨B)}
– Domain(U

k
(Q)) = {0,1}

Zion Schell Tractable Constraint Languages - 29 4-15-13

Constraint Languages: Expressiveness

The kth-order universal gadget U
k
(Q)

● Variables of U
k
(Q)

– One variable for each k-tuple composed of
elements in the domain of U

k
(Q)

– e.g:
● k=2 and Domain(U

k
(Q)) = {0,1,2}

– Variables of U
k
(Q) =

{v00,v01,v02,v10,v11,v12,v20,v21,v22}

Zion Schell Tractable Constraint Languages - 30 4-15-13

Constraint Languages: Expressiveness

The kth-order universal gadget U
k
(Q)

● Variables of U
k
(Q)

– name of a variable
● the tuple to which it corresponds
● e.g: name of v01 is (0,1)

Zion Schell Tractable Constraint Languages - 31 4-15-13

Constraint Languages: Expressiveness

The kth-order universal gadget U
k
(Q)

● Variables of U
k
(Q)

– name relation of a list of variables
● defined elementwise by variable names
● e.g: (v02,v01,v10,v22) → {(0,0,1,2),(2,1,0,2)}

Zion Schell Tractable Constraint Languages - 32 4-15-13

Constraint Languages: Expressiveness

(v02,v01,v10,v22) {(0,0,1,2),(2,1,0,2)}
transpose

v v v v

0 0 1 2

2 1 0 2

v02

v01

v10

v22

The kth-order universal gadget U
k
(Q)

● Relations of U
k
(Q)

– For each relation R in Q
● Apply R to a tuple of variables in U

k
(Q) if and only

if the name relation of the tuple is a subset of R

– In other words, find all tuples of variables so if
you write them vertically, the rows spell out
some of the tuples of R

Zion Schell Tractable Constraint Languages - 33 4-15-13

Constraint Languages: Expressiveness

● This is a horribly strange definition.

● We will therefore derive and show U
1
(Q),

U
2
(Q) and U

3
(Q) for Q = {A B,⊕ ¬A}

– A B being the “xor” relation⊕
● (A,B) in {(0,1),(1,0)} satisfies the constraint

– ¬A being the “not” relation
● (A) in {(0)} satisfies the constraint

– Domain(U
k
(Q)) is Boolean

Zion Schell Tractable Constraint Languages - 34 4-15-13

Constraint Languages: Expressiveness

U
1
(Q):

– Variables: 1-tuples of domain elements
● {v0,v1}

– Constraints:
● ⊕ matches (v0,v1) and (v1,v0)

– i.e: name relation of (v0,v1) is {(0,1)}
● ¬ matches (v0)

– i.e: name relation of (v0) is {(0)}

Zion Schell Tractable Constraint Languages - 35 4-15-13

Constraint Languages: Expressiveness

U
1
(Q):

Zion Schell Tractable Constraint Languages - 36 4-15-13

Constraint Languages: Expressiveness

v1 v0⊕ ¬

U
2
(Q):

– Variables: 2-tuples of domain elements
● {v00, v01, v10, v11}

– Constraints:
● ⊕ matches (v00,v11),(v01,v10),(v10,v01),

(v11,v00)
– name relation of (v00,v11) is {(0,1),(0,1)}, etc.

● ¬ matches (v00)
– name relation of (v00) is {(0),(0)}

Zion Schell Tractable Constraint Languages - 37 4-15-13

Constraint Languages: Expressiveness

U
2
(Q):

Zion Schell Tractable Constraint Languages - 38 4-15-13

Constraint Languages: Expressiveness

v11 v00 ¬

v10 v01⊕

⊕

U
3
(Q):

– Variables: 3-tuples of domain elements
● {v000, v001, v010, v011, v100, v101, v110, v111}

– Constraints:
● ⊕ matches (v000,v111),(v001,v110),(v010,v101),

(v011,v100),(v100,v011),(v101,v010),
(v110,v001),(v111,v000)
– name relation of (v001,v110) is {(0,1),(0,1),(1,0)}, etc.

● ¬ matches (v000)
– name relation of (v000) is {(0),(0),(0)}

Zion Schell Tractable Constraint Languages - 39 4-15-13

Constraint Languages: Expressiveness

U
3
(Q):

Zion Schell Tractable Constraint Languages - 40 4-15-13

Constraint Languages: Expressiveness

And here's where the magic happens:
– Theorem 11.1 (Cohen, Gyssens, Jeavons, 1996)

● Let Q be a constraint language over a domain D
● Let R be a relation over D
● Let k be the number of supports in R

● Let L
R
 be any list of variables in U

k
(Q) whose

name relation is R
● Then,

– either U
k
(Q) expresses R as a gadget with construction

site L
R
,

– or R is not expressible in Q

Zion Schell Tractable Constraint Languages - 41 4-15-13

Constraint Languages: Expressiveness

Example application:
– Is it possible to express (A B) with the ⇒

constraint language Q = {A B,¬A}?⊕
– (A B) formally:⇒

(A,B) in {(0,0),(0,1),(1,1)} satisfies the constraint

– (A B)⇒ has three supports, so we use U
3
(Q)

Zion Schell Tractable Constraint Languages - 42 4-15-13

Constraint Languages: Expressiveness

U
3
(Q) revisited:

– Looking for a pair of variables with name
relation a subset of {(0,0),(0,1),(1,1)}

Zion Schell Tractable Constraint Languages - 43 4-15-13

Constraint Languages: Expressiveness

U
3
(Q) revisited:

– Looking for a pair of variables with name
relation a subset of {(0,0),(0,1),(1,1)}

– Sample names would be ((0,0,1),(0,1,1)),
((1,0,0),(1,0,1))

Zion Schell Tractable Constraint Languages - 44 4-15-13

Constraint Languages: Expressiveness

U
3
(Q) revisited:

– Looking for a pair of variables with name
relation a subset of {(0,0),(0,1),(1,1)}

– Sample names would be ((0,0,1),(0,1,1)),
((1,0,0),(1,0,1))

(v100,v101) or

(v010,v011) work
(among others)

Zion Schell Tractable Constraint Languages - 45 4-15-13

Constraint Languages: Expressiveness

U
3
(Q) revisited:

– If we treat U
3
(Q) as a gadget with construction

site (v100,v101), what relation is formed?

Zion Schell Tractable Constraint Languages - 46 4-15-13

Constraint Languages: Expressiveness

U
3
(Q) revisited:

– If we treat U
3
(Q) as a gadget with construction

site (v100,v101), what relation is formed?
● {(0,0),(0,1),(1,0),(1,1)} are all viable pairs

Zion Schell Tractable Constraint Languages - 47 4-15-13

Constraint Languages: Expressiveness

U
3
(Q) revisited:

– The gadget does not form the relation (A B)⇒
– This is proof that it is not possible to form

(A B) from {A B,¬A}⇒ ⊕

● The proof of Theorem 11.1 is esoteric and
whimsical

● Read it if you want to simulate a hangover
(without the night out beforehand)

Zion Schell Tractable Constraint Languages - 48 4-15-13

Constraint Languages: Expressiveness

● The universal gadget is not the smallest
gadget for all applications; for instance:

 VS

Zion Schell Tractable Constraint Languages - 49 4-15-13

Constraint Languages: Expressiveness

C

B

A

D

≠≠

≠ ≠

≠

?

● The size of the universal gadget U
k
(Q) with

domain size d is dk

● Finding better gadgets in given constraint
languages is a open avenue of research

● U
k
(Q) also can be used to determine the

tractability of Q
● The specific method even suggests

algorithms for problems in Q

Zion Schell Tractable Constraint Languages - 50 4-15-13

Constraint Languages: Expressiveness

● U
k
(Q) also can be used to determine the

tractability of Q
● The specific method even suggests

algorithms for problems in Q
● Let's start with some an example/theorem.

Zion Schell Tractable Constraint Languages - 51 4-15-13

Constraint Languages: Complexity

Theorem 11.2 (Schaefer 1978)

Let Q be a boolean constraint language
– Q is tractable if and only if for each R in Q:

● R allows (0,0,...,0) or (1,1,...,1)
● R allows disjunctive clauses with at most one

negated variable (anti-Horn-clauses)
● R allows disjunctive clauses with at most one

nonnegated variable (Horn-clauses)
● R allows disjunctive clauses with at most two

variables per clause (2-SAT)
● R is a set of solutions to linear equations on {0,1}

Zion Schell Tractable Constraint Languages - 52 4-15-13

Constraint Languages: Complexity

● By Theorem 11.2, we know exactly when a
constraint language on a domain of size 2
is tractable

● Not true with other domain sizes
● We do have some conditions for tractability

Zion Schell Tractable Constraint Languages - 53 4-15-13

Constraint Languages: Complexity

● A necessary condition for a tractable
constraint language depends on the
following definitions:
– k-ary operation

● idempotent k-ary operation
● essentially-unary k-ary operation

– projection
● semi-projection
● majority operation
● affine operation

Zion Schell Tractable Constraint Languages - 54 4-15-13

Constraint Languages: Complexity

● A k-ary operation from Dk to D maps all k-
tuples of elements of D to members of D
– e.g: addition function (k=2, D=)ℕ

● +(a,b) maps (a,b) to a+b

– e.g: maximum function (k=2, D=)ℝ
● max(a,b) maps (a,b) to a or to b

– e.g: 3-disjunction function (k=3, D={0,1})
● 3OR(a,b,c) maps (a,b,c) to a b c∨ ∨

Zion Schell Tractable Constraint Languages - 55 4-15-13

Constraint Languages: Complexity

● Idempotent k-ary operation
– Maps (x,x,...,x) to x for all x

● e.g: max(a,a) = a

● Essentially-unary k-ary operation

– Maps (x
1
,x

2
,...,x

k
) to f(x

i
) for some f(x) and i

– A projection is a essentially-unary k-ary
operation with f(x) = x
● e.g: π

b
(a,b) = b

Zion Schell Tractable Constraint Languages - 56 4-15-13

Constraint Languages: Complexity

● Semi-projection

– Maps (x
1
,x

2
,...,x

k
) to x

i
 in only some cases

● requires k≥3
● examples are very contrived

● Majority operation
– Maps (a,b,c) to its most common element

● Affine operation
– Maps (a,b,c) to a+b-1+c

● where ⟨D,+ is an Abelian group⟩

Zion Schell Tractable Constraint Languages - 57 4-15-13

Constraint Languages: Complexity

● Abelian group is a pair D,+⟨ ⟩
– D is a domain

● Contains an identity element i
– a + i = a

● Every element a has an inverse a-1 under +
– a + a-1 = i

– + is an operation on D2 such that
● D is closed under +
● + is associative
● + is commutative

Zion Schell Tractable Constraint Languages - 58 4-15-13

Constraint Languages: Complexity

● One final definition:

– Let s be a solution to U
k
(Q)

– Let the k-ary operation ŝ associated with s
be defined as follows:
● The value of ŝ(x) is the value assigned to the

variable with name x in the solution s.

Zion Schell Tractable Constraint Languages - 59 4-15-13

Constraint Languages: Complexity

● Example: Q = {A B,⊕ ¬A}

– There exists a solution s to U
3
(Q) as follows:

v111 = 1; v110 = 1; v101 = 1; v100 = 0;

v011 = 1; v010 = 0; v001 = 0; v000 = 0

– ŝ(1,1,1) = 1, ŝ(1,0,1) = 1, ŝ(0,1,0) = 0, etc.

Zion Schell Tractable Constraint Languages - 60 4-15-13

Constraint Languages: Complexity

● Why would anyone care about the specific
types of k-ary operations associated with
solutions of kth-order universal gadgets to
constraint languages?

● Theorem 11.4

Assuming P≠NP, any tractable constraint
language over a finite domain must have a
solution to its universal gadget associated
with either a constant operation, a majority
operation, an idempotent binary operation,
an affine operation, or a semi-projection.

Zion Schell Tractable Constraint Languages - 61 4-15-13

Constraint Languages: Complexity

● Example: Q = {A B,⊕ ¬A}
– From:

v111 = 1; v110 = 1; v101 = 1; v100 = 0;

v011 = 1; v010 = 0; v001 = 0; v000 = 0

– We get:
ŝ(1,1,1) = ŝ(1,1,0) = ŝ(1,0,1) = ŝ(0,1,1) = 1

ŝ(1,0,0) = ŝ(0,1,0) = ŝ(0,0,1) = ŝ(0,0,0) = 0

– ŝ is a majority operation!

– Q is therefore not intractable

Zion Schell Tractable Constraint Languages - 62 4-15-13

Constraint Languages: Complexity

Corollary to Theorem 11.4

– If all solutions to U
|D|

(Q) are essentially unary,

then Q is NP-complete

– This gets disgusting...
● U

|D|
(Q) has 2|D| = |D||D| variables, and

combinatorially manyconstraints
– This is the only time I have ever seen tetration used in

an actual formula (and I studied mathematics as an
undergrad)

● Attempting an exhaustive solution is imbecilic

Zion Schell Tractable Constraint Languages - 63 4-15-13

Constraint Languages: Complexity

● Some sufficient conditions for a tractable
constraint language depend on the
following definitions:
– A relation R allows an operation w if w is

associated with a solution to U
k
({R})

– inv(w) is the set of R such that R allows w

Zion Schell Tractable Constraint Languages - 64 4-15-13

Constraint Languages: Complexity

Example: Constant Operations
– Let w be any constant operation on D

● w(x)=C for all x

– Let Q = inv(w)
● all relations having only one support

– Q is always tractable:
● Each constraint determines all variables in its

scope
● If two constraints disagree, no solution exists

– The constant language is an example

Zion Schell Tractable Constraint Languages - 65 4-15-13

Constraint Languages: Complexity

Example: Semilattice Operations
– Let + be any operation which is idempotent,

commutative, and associative
● x+x = x; x+y = y+x; (x+y)+z = x+(y+z)

– Let Q = inv(+)

– Q is always tractable; the following procedure
finds a solution:

Zion Schell Tractable Constraint Languages - 66 4-15-13

Constraint Languages: Complexity

Example: Semilattice Operations
– Establish GAC on the problem

– If any domain is empty, no solution exists

– Otherwise, return the solution where for each
variable v with domain d={d

1
,d

2
,...,d

k
}, the

value of v is d
1
+d

2
+...+d

k

– An example of this is Horn-SAT
● The operation “and” is a semilattice operator

found as a solution to U
2
(Horn-clause)

x x = x; x y = y x; (x y) z = x (y z)∧ ∧ ∧ ∧ ∧ ∧ ∧

Zion Schell Tractable Constraint Languages - 67 4-15-13

Constraint Languages: Complexity

Example: Near-unanimity Operations
– Let w be any k-ary operation which requires

near-unanimity
● all arguments but one must agree, returns the

most common
● e.g: the 3-majority operation: w(x,x,y) = w(x,y,x) =

w(y,x,x) = x for all x,y

– 2-SAT falls into this category:
● w(a,b,c) = (b=c)?b:a can be found in U

3
(2-SAT)

Zion Schell Tractable Constraint Languages - 68 4-15-13

Constraint Languages: Complexity

● There are other examples, but the basic
idea is this:
– Even though the specifics of constraint

languages vary significantly, the operations
associated with solutions to their universal
gadgets determine quite effectively whether
or not a given language is tractable.

Zion Schell Tractable Constraint Languages - 69 4-15-13

Constraint Languages: Complexity

● Necessary and sufficient conditions for
tractability are unknown for most cases

● With domain size 2, we have solved it
completely, as Theorem 11.2

● In the general case for higher domain size,
it isn't known

● If necessary and sufficient conditions could
be determined, this would prove or
disprove P = NP

Zion Schell Tractable Constraint Languages - 70 4-15-13

Constraint Languages: Complexity

● Relational Subclasses
– specific sets of CSPs determined by their

constraint language

● Structural Subclasses
– specific sets of CSPs determined by

properties of their hypergraphs
● e.g: requiring a tree structure, requiring clique

subgraphs, or any of the other elements
discussed in previous classes

But this is not all...

Zion Schell Tractable Constraint Languages - 71 4-15-13

Constraint Languages: Hybridization

● Hybrid Subclasses
– specific sets of CSPs determined by their

constraint languages AND properties of their
hypergraphs

● There seems to be no particular heuristics
for the tractability of hybrid subclasses

● An example follows:

Zion Schell Tractable Constraint Languages - 72 4-15-13

Constraint Languages: Hybridization

● Given any constraint problem C with
domain size d and maximum constraint
arity r, then if C is strong d(r+1)-
consistent, it is globally consistent.

● This subclass is tractable and dependent
both on the language (domain size and
constraint arity) and structure
(consistency requirements).

Zion Schell Tractable Constraint Languages - 73 4-15-13

Constraint Languages: Hybridization

● Constraint languages are sets of relations.
● Gadgets can be used to extend constraint

languages beyond the strict relations
present in their definition.

● The expressiveness of constraint
languages can be readily defined.

● The tractability of constraint languages can
be determined to some extent, but the
general case (domain size greater than 2)
remains unknown.

Zion Schell Tractable Constraint Languages - 74 4-15-13

Constraint Languages: Summary

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

