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1 Introduction

In our previous class, we had begun to discuss temporal constraint networks. We had made the choice to examine
temporal constraint networks instead of temporal logics, as temporal logics are particularly complicated (and
not within the scope of this course anyway).

There are multiple methods to express temporal problems, based mainly on the dual dichotomy induced by two
choices made by the planner: how time is to be represented, and how constraints on said time are to be defined.
One option is to represent time as points and another is to represent time as intervals. Representing time as
points makes the variables of the representative CSP be simply real numbers, representing the (very specific)
time when something happens (e.g., a light turns on at time 1.3). Representing time as intervals requires the
variables to be pairs of real numbers, representing the beginning and end of given events (e.g., a light begins
turning on at time 1.25 and ends turning on at time 1.3).

Furthermore, the constraints can be defined either qualitatively or quantitatively. Qualitative constraints are
those which only describe constraints in simple relations between two variables: “x happened before y” or “y
ended at the same time as x.” Quantitative constraints, on the other hand, allow the introduction of more
specific constraints: “x happened five minutes before y” or “y ended within thirty seconds of x ending.”

These notes will cover our discussion of qualitatively-constrained time.

2 Point Algebra (Intro)

If we use qualitative constraints and point-based representation of time, we arrive at the temporal constraint
network representation called “point algebra”. Point algebra uses the three basic relations “greater than” (>),
“less than” (<) and “equal to” (=). These can be combined disjunctively for a total of 7 = 23 � 1 non-null
relations (for instance, the disjunctive constraint X {>,=} Y is meant to represent “either X is greater than Y
or X is equal to Y”).

3 Interval Algebra (Intro)

On the other hand, if we use qualitative constraints and an interval-based representation of time, we will be
using the temporal constraint network representation known as “interval algebra”. Interval algebra uses a total
of 13 relations which describe the relations between the beginnings and ends of two separate events. There are
six of these which are invertible (and their inverses add up to another six), and one which is not invertible.
They are X {“is before” (b), “overlaps with” (o), “meets” (m), “is during” (d), “starts with” (s), “finishes with”
(f), “is equivalent to” (=)} Y and the inverses of b, o, m, d, s, and f (denoted by the addition of an i after
each). These too can be disjunctively combined to arrive at 8191 = 213 � 1 non-null relations (for instance, the
constraint X b, bi Y means that X is before or after Y ).
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4 Working with Temporal Constraint Networks

Once a problem has been correctly formulated, presumably, you would like a solution. The suggested method
is to apply path consistency to the dual graph of the problem to simplify the constraints (preferably down to
minimality) making a search significantly more rapid.

4.1 Path Consistency and Minimality

When using point algebra, if the constraints are convex (not containing 6=) the application of a single pass of
the algorithm QPC-1 should reduce the dual graph to minimality. Otherwise (if the constraints contain 6=),
achieving minimality requires 4-consistency, and it is up to the user to judge whether it would be more optimal
to perform this expensive reduction or just to continue with a normal search regardless.

On the other hand, interval algebra does not react as well to path consistency algorithms. Performing said
algorithm requires a 13 ⇥ 13 table of compositions, none of which consistently reduce the size of the problem.
Of particular interest are b ⌦ bi, bi ⌦ b, and d ⌦ di, three compositions which tell you precisely nothing about
the relationship between the two intervals in question1.

Once you have completed your Path-Consistency simplification of the problem, it is possible to proceed to
generating a solution.

4.2 Solving a Temporal Constraint Network

If you are using point algebra, there exists a polynomial algorithm to find a solution to your problem. The
algorithm uses O(n3) time and O(n2) space.

Solving interval algebra problems is in NP, that is, you must either use a general search, or use an imperfect
algorithm like Allen’s algorithm. Specifically, Allen’s algorithm is sound but not complete2.

5 Point Algebra v. Interval Algebra

This leaves the obvious question, why you would ever use interval algebra if it requires such a leap in complexity?
The answer to this is that point algebra and interval algebra are not equivalent in expressive power. The seminal
example is that in point algebra, it is not possible to express the idea “Event X, starting at time xa and ending
at time xb is either strictly before or strictly after event Y , starting at time ya and ending at time yb.” There
is no way to preclude an overlap between time point xb and time point ya which does not require that X be
strictly before Y using just the three relations <, >, and =.

However, certain elements of interval algebra problems can be reduced to equivalent point algebra problems.
These are called tractible fragments. If such a fragment exists in a problem otherwise requiring interval algebra,
it may be suggested to export the fragment to point algebra, solve it there, and use the results to simplify the
rest of the problem’s expression in interval algebra.

1
e.g., if x is before y and y is after z, you can’t tell anything about the relationship between x and z.

2
All solutions found by the algorithm will be valid, however it is not guaranteed to find all or any solutions.
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