Scribe Notes: 4/1/2013 and 4/3/2013
Presenter: Daniel Geschwender

Scribe: Tony Schneider

Reading: Chapter 14 of Dechter’s Textbook

Probabilistic Networks

In both hard and soft CSPs, the constraints in the problem are known with certainty.
However, there are many situations in which uncertainty needs to be included in the
model. Probabilistic networks (as well as belief and Bayesian networks) are one way to
handle this uncertainty. Although these networks are not ‘pure’ CSPs, many of the
same techniques used in CP (especially those for optimization) can be applied to
probabilistic networks.

Background on Probability
* Single variable probability [P(b)]: The probability of an event occurring
* Joint probability [P(a,b)] : The probability of two events occurring together
* Conditional probability [P(a|b)] : The probability of one event occurring
knowing that another event has occurred

According to Bayes Theorem, we have the following relations:

Plalb) = %

P(alb)P(b) = P(bla)P(a) = P(a,b)

Chaining Conditional Probability

A joint probability of any size can be expressed as the product of conditional
probabilities, enabling transformation from one to the other. In the case of probabilistic
networks:

* The conditional probabilities are known a priori, i.e., given as input as tables
* While the joint probabilities are queries (e.g., “What is the probability of events
a, b, and c co-occurring?”).

P(ay,as,...,a,) = P(ai|asz, ...,an) Plazlas, ..., an) P(aslay, ..., an)... P(ay)

Belief Networks

The graphical representation for a belief network is a directed, acyclic graph, where
each edge represents the causal influence of one variable on another. Direct influences
are modeled with single edges; indirect influences by paths of length two or more. In

Figure 1, the season has a direct influence on both the sprinkler system and rain, and an
indirect influence on the whether it’s wet or not.

Figure 2: Probabilistic Network Figure 1: Conditional Probability
Example Table Example
Season
c: [A]pic=olA)]P(c=1]A)
w 1.0 0.0
Automated .
soriakies (B) (O Rain sp| 0.7 0.3
su 0.8 0.2
f 0.9 0.1
Manual

watering (G) Slippery

Each variable in the network has a corresponding conditional probability table (CPT),
which gives the conditional probability that a variable has some value given the value of
its parents (i.e., the variables that directly affect it). Figure 2 shows a conditional
probability table for variable C of the corresponding belief network.

In addition to the variables, domains, conditional probability tables, and graph, an
evidence set may be given, which is tantamount to a subset of variables that are already
instantiated (i.e., variables whose domain values are set as input).

The network itself gives a probability distribution over all the variables in the network.
Assigning values to variables and multiplying the corresponding probabilities (from the
CPTs) will give the probability of that particular series of events occurring.

There are three main queries for probabilistic networks:
1. Belief assessment: Given some evidence, how are the probabilities of the other
variables in the network affected?
2. Most probable explanation (MPE): Given some evidence, what is the most
probable assignment to the other variables?
3. Maximum a posteriori hypothesis (MAP) : Assign a subset of unobserved
variables to maximize their conditional probability

Belief Assessment

The idea behind belief assessment is to determine how probabilities of variables are
affected given some evidence. The probabilities of variables not in evidence can be
updated to reflect the new information, in a process also known as belief updating.

As in constraint optimization (chapter 13 of Dechter), a modified version of bucket
elimination can be used to perform belief updating. The algorithm (called ELIM-BEL) is

similar to bucket elimination for constraint optimization (ELIM-OPT), but the summation
in ELIM-OPT is replaced with the product, and maximization replaced by summation.

The algorithm works by setting up the buckets as you would in other bucket elimination
algorithms, with the variable whose belief you want to update at the top of the ordering.
Then, for each bucket from the bottom up:
* If the bucket contains any evidence (i.e., we know what the variable assignment
is), ignore all the probabilities not pertaining to the assignment
* Otherwise generate a new CPT over the union of the scopes of other CPTs in the
bucket with the bucket’s variable projected out (similar to standard bucket
elimination).

To generate the new CPT, every possible tuple is generated for the given scope,
multiplying the probabilities in the existing CPTs corresponding to the generated tuple.
To project out a variable, the probabilities of identical tuples are added up to produce
the final CPT that will be placed in the lowest bucket whose variable is in the generated
CPT’s scope:

* Summation is used to project out a variable because it is equivalent to asking the
question, “What is the probability of this tuple occurring, disregarding this
variable?” For example, if the probability of the 2-tuples (0, 0), (0, 1), and (1,0)
over the scope {A, B} are .6, .3, and .1, respectively, then projecting out variable
B yields two 1-tuples, (0) and (1) with probabilities .9 and .1.

e Similarly, the product is used to generate tuples because each value in the
generated tuple has a distinct probability of appearing. The probability of all of
the values in a tuple appearing in together is their product.

Once only a single CPT remains, the CPT is normalized so that the probabilities of all
values of the variable sum to 1:

The output of ELIM-BEL is an updated CPT for a single variable. To get the updated CPTs
for a different variable not in evidence, the algorithm needs to be run again with the to-
be-updated variable at the top of the ordering. Daniel’s slides' contain a full example
of EILM-BEL (slides 22-29).

1 http://cse.unl.edu/~choueiry/$13-921/Slides/DG-ProbabilisticNetworks.pptx

ELIM-BEL Derivation

The derivation of the algorithm is again similar to the derivation for constraint
optimization. Here, if the desire were to update the belief in a variable a given that our
evidence is g = 1 using the network in Figure 1 above, the full computation would be:

Pla,g=1)= Y P(glf)P(flb,c)P(d|a,b)P(cla)P(bla)P(a)
c,b, f,d,g=1

..which is equivalent to (pushing the summations inward):

P(a))_ P(cla) Y P(bla) Y P(flb,c) Y P(dla,b) > P(g|f)
c b f d

g=1

Now, moving right to left, we can generate a function over G that only depends on f,
and move it as far to the left as possible:

P(a)) P(cla)> P(bla) Y P(flb,c)Aa(f) Y P(dla,b)
c b f d

This process can be repeated for each rightmost summation until only a function over
variable a is left:

But we don’t want the probability of each value of a and g = 1, we want the probability
of a given that g = 1, so a final normalization step is needed:

P(a)Ac(a)
>, Pla)Ac(a)

a€D,

Plalg=1) =

This expression stems from the probability functions given above:

P(alb) =

Most Probable Explanation (MPE)

The idea behind MPE is to find the most likely assignment to all the variables in the
network given some evidence (as opposed to belief updating, which updates a single
variable’s probability). Again, this computation can be performed using a modified
bucket elimination algorithm called ELIM-MPE.

ELIM-MPE works in an identical fashion to ELIM-BEL, with the exception that now the
maximum probability is used when projecting variables out of a CPT. Further, the output
of the BE portion of the algorithm will be a probability, but in order to find the

corresponding assignment, the solution must be generated by going through the
ordering from first to last and finding the correct value assignments.

An important note is that the functions in buckets with evidence can be considered
separately from one another (i.e., rather than taking the product and generating a
higher arity CPT, it is possible to generate two separate functions to keep the arity
lower). The examples provided in the book (and slides 41-55) use the product as in
belief updating.

Maximum a Posteriori Hypothesis (MAP)
MAP queries give the most probable assignment to a subset of the non-evidence
variables given some evidence (as opposed to the most probable assignment to all non-
evidence variables). As Shant pointed out on Piazza, MAP essentially has three sets of
variables:

1. the variables in evidence,

2. the variables for which we want to find the assignment with the highest

probability, and

3. athird set of variables whose assignments influence the second set.
This situation makes MAP more difficult than MPE, because the variables in the second
set must be instantiated before the third (which curtails many optimization
opportunities).

ELIM-MAP is an algorithm (one more!) that uses bucket elimination to generate the
MAP assignment. The input for the algorithm is the same for ELIM-MPE, but the
algorithm additionally requires the subset of variables for which we’re interested in
finding the most probable assignment. The subset of variables must come first in the
provided ordering. The initialization procedure is the same as ELIM-MPE, as is the
treatment of variables with evidence.

There are two key differences between ELIM-MAP and ELIM-MPE:

* In ELIM-MAP, if the variable is not in the subset of variables in which we’re
interested, the new CPT is generated by taking the product of all functions and
projecting out the bucket’s variable by summing (like in belief updating).

* In ELIM-MAP, if the variable is in the subset of variables in which we’re
interested, the new CPT is generated by taking the product of all functions and
projecting out the bucket’s variable by maximizing (as in MPE).

These two rules make ELIM-MAP a more general algorithm than both ELIM-BEL and
ELIM-MPE:
* if the subset is all of the variables in the network, the algorithm is equivalent to
ELIM-MPE,
* while if the subset is empty, the algorithm is equivalent to ELIM-BEL (with the
exception that the last step—generating the assignment—is omitted).

Complexity of Elimination Algorithms

Because all of the ELIM-* algorithms are based on bucket elimination, the complexity is
dominated by the time and space required to process each bucket. Specifically, the
time and space complexity are exponential in the number of variables in a bucket,
meaning that the overall complexity is bounded by the size of the largest bucket (and
hence, by the induced width given some ordering).

As previously mentioned, if a bucket contains evidence, then taking the product to
generate a new CPT is unnecessary because we already know what the assignment for
the bucket will be. Instead, we can take the graph with some fixed ordering, create the
induced graph, and remove any nodes that have evidence. This method provides a
tighter bound on the induced width of the graph called the adjusted induced width.

Question (Robert): Can we just use the evidence first (i.e., instantiate any variables with
evidence immediately)?

Answer: You can, and doing so may generate simpler functions (preventing unnecessary
calculations), but it may incidentally increase the adjusted induced width of the graph
(see Figure 3 below, where the left graph eliminates the variable B after moralizing the
graph, while the right graph instantiates B up front and creates an induced graph with a
higher width).

(8

:

©

w'(d, ,B=1)=2 w'(d, ,B=1)=3

Figure 3: Adjusted Induced Width

Hybrid of Elimination & Conditioning

Because all of the previous elimination algorithms are based on bucket elimination, they
require an exponential amount of memory. This requirement is prohibitive for most
problems, so some compromise between search and elimination is required in order to
trim down the amount of space required by the algorithms.

As a preliminary, full search in a probabilistic network would consist of a traversal of a
tree of variable assignments. At each leaf, the joint probability can be calculated for the
given path as shown in Figure 4:

=0
b=0 1L ——P(d = 1}b,a)P(g =0|f=0) P(cla) P(bla) P(a)
P(d=1|b,a)P(g = 0|f=1) P(cla) P(bla) P(a)
_bél(_g—md: 1|b,a)P(g = 0|f=0) P(cla) P(bla) P(a)

P(f|b.c) P(d=1|b,a)P(g=0|f=1) P(cla) P(bla) P(a)

Figure 4: Probabilistic Network Search Tree for P(a, G=0, D=1) given network in Figure 1

In hybrid search, the idea is to search only over some subset of variables Y, while other
variables will be handled with the corresponding elimination algorithm, using the
assignments in Y as evidence.

There are two approaches to hybrid search:
1. Use a static selection for Y (i.e., Y is known ahead of time or given as input)
2. Use a dynamic selection for Y

Consider a hybrid for belief updating:

* The static case proceeds in a straightforward manner: For each assignment of
values to the variables in Y, get the output from ELIM-BEL using the union of the
provided evidence and the current assignment as input, and sum the outputs of
each call to ELIM-BEL together to obtain the updated CPT.

* The dynamic case selects the variables in Y based on some bound of the degree
of a variable (i.e., any variable with a degree higher than the bound belongs in Y,
while elimination is performed on the other variables). This operation limits the
number of CPTs to be considered in each bucket of the elimination algorithm.

The space complexity for hybrid search is

O(n-exp(w*(d,Y UFE)))

where n is the number of variables, w* is the induced width of the graph along some
ordering d, and Y U E is the set of evidence given to the elimination algorithm. Similarly,
the time complexity is

%k
O(n-exp(w*(d,Y UFE)+|Y]))
The additional | Y] is due to the time required to perform search over those variables.
A final note: if EUY is a cycle-cutset of the moral graph (i.e., the removal of those
variables leaves a graph with no cycles), then there will be some ordering of the graph
such that its adjusted induced width is 1, leaving a tree and reducing ELIM-COND-BEL

(the hybrid algorithm) to the cycle-cutset algorithm.

Note: All figures and equations are taken from Daniel’s slides.

