Speaker: Olufikayo Adetunji

Scribe: Robert Woodward
Dates: April 8,2013 & April 10,2013
Topic: Constraint-Based Scheduling and Planning (CP Handbook, Chapter 22)

The discussion focused on scheduling rather than planning. First, we give preliminaries of
scheduling and planning (scheduling is the focus here). Then give a formal definition of
scheduling, and present extensions to it. After that, we go over three examples of
scheduling problems. Following that, we discuss disjunctive then conjunctive constraint
propagation, and finally methods for solving scheduling as an optimization problem.

Overall you should take away that modeling scheduling problems is very open! The variety
of constraints, resources, priorities, and optimization criteria in scheduling is too wide to
capture in a unique, generic constraint model. Unlike CSP where the model is abstract and
generic enough to allow us to plug-and-play, solving a large number of problem instances
with a simple backtrack search, in scheduling, specific constraints have to be carefully
crafted to properly model the situation at hand. How do products depend on resources, on
time? Can tasks be broken, resources shared? Are there set-up times for equipment? How
to model buffers? Overall, your resources define constraints.

Preliminaries:

Scheduling task: Allocate activities to resources over time, respecting constraints.
Planning task: Construct a sequence of actions to transfer the initial state of the world into
a goal state. In general,

- The tasks are not known in advanced. We need to find the tasks to be executed.

- We do not care about time (release date, due date) or the duration of activities. We
only care about the determining the sequence of tasks, a partial order of precedence
between tasks.

- Figure 1 shows the block world (recall from the Al class), where you want to get
from the initial state to the goal state.

] [

Initial Goal
Figure 1: The initial and goal state of the block world.

A

@O

The instructor interjected in the discussion inviting the class to further distinguish between
scheduling and resource allocate where resources allocation is a simplification of
scheduling.
- In resource allocation, we do not care about time, we only care about mapping
resources.
- For example, Graduate TA assignment program, or allocating students to projects at
CSE.

N

~

In Constraint-Based Scheduling & Constraint-Based Planning, the task Q
is to solve Scheduling or Planning problems using CP techniques. 18
However, the presentation focused on Constraint-Based Scheduling. Q O

Simple Motivating Example: Q
Blcycle Assembly (Shown in Figure 2) C) d
3 workers can perform tasks.

- 10 tasks with its own duration (T4,..., T10). O

- Precedence constraint (e.g., T1 must proceed T?). /2\ O

- No preemption (cannot interrupt tasks). @ @

- Goal: Want to minimizes breaks in time the schedule. Figure 2: Precedence graph for
Consider the random schedules in Figure 3 and optimal schedule Picv¢l¢assembly.
in Figure 4. The optimal schedule (no time breaks) uses only two
people (person 3 goes on vacation ©).

| I l | | | I |
|

Figure 3: Random schedule for bicycle assembly. Figure 4: Optimal schedule for bicycle assembly.

Formal Definition of Scheduling:
Activity A: is an entity needing some resources & time
Has corresponding variables:
- start(A): Earliest start time of the activity
o [est(A)lst(A)]
o Ist(A) = max(start(A)): latest start time
o est(A) = min(start(A)): earliest start time
- end(A): Latest completion time of the activity
o [eet(A)lct(A)]
o eet(A) =min(end(A)), earliest end time
o lIct(A) = max(end(A)), latest competition time
- proc(A): processing time (duration) of the activity. Equivalent to est(A)-eet(A).
Note: start(A) and end(A) might also be represented as [r,d]: The release and deadline of A.
r=est(A) and d=Ict(A).

Types of Resources: Either non-preemptive or preemptive.
Non-preemptive: Activities cannot be interrupted: end(A)-start(A)=proc(A)
Preemptive: Activities can be interrupted: end(A)- start(A)zproc(A).
Compute proc(A)=proc(A1)+proc(Az)+proc(As)
Figures 5 and 6 show examples of non-preemptive and preemptive schedules, respectively.

i — T
< p(A) < 7 <
© 8 c ..
7 & time Z o_time
01 2 3 45 6 7 8 9 10 01 2 3 45 6 7 8 9 10 11 12
Figure 5: Non-preemptive schedule Figure 6: Preemptive schedule

Resource Constraints: Either Disjunctive Scheduling or Cumulative Scheduling.

Disjunctive Scheduling (also called Unary Constraints): All resources have a unary
capacity (cap(A) = 1). Resources called machines, which can have at one activity executing
at a time.

Cumulative Scheduling: Each activity uses some capacity of the resource, cap(A).
Resources can execute in parallel if cap(A) is not exceeded.

Figures 7 and 8 show an example of disjunctive and cumulative scheduling, respectively.

N | || M E

012 3 45 6 7 8 9 1 11 12 13 14 2 3 4 5 6 7 8
Figure 7: Disjunctive scheduling. Figure 8: Cumulative scheduling.

Temporal Constraints: Either precedence constraints or disjunctive constraints.

We have already seen these when we studied Temporal CSPs! (See Temporal
Reasoning/Temporal CSPs in the class handouts: http://cse.unl.edu/~choueiry/S13-921 /handouts.html)

Precedence constraints: Sequencing of activities. A<B, meaning end(A) < start(B).
Figure 9 shows an example where A< B.

l | | | ime
01 23456 7 89 10

Figure 9: Activity A must come before activity B.

Disjunctive constraint: Activities cannot overlap. A < B or B < A, meaning
end(A)<start(B) or end(B)< start(A)

Optimization: We want to optimize an objective function.
- Objective function uses a variable criterion (equal to the value of the objective
function)
- Here, we focus on the makespan criterion (completion time of last activity)
o Introduce L, proc(L) = 0. Want to minimize L.
o Add precedence constraint to each T with no successor (because L must
comes last). Figure 10 shows an example of adding L.

Figure 10: Adding the makespan L to the precedence graph.

Extensions: Below alternative resources, reservoir resource, breakable activities, and state
resources are described, which are other types of resources that can be modeled
(depending on the problem).

Alternative Resources: Activity A must be scheduled from its alternative resources.
- altern(A) = {R1, Rz, R3}; A can only be scheduled on resources Ry, Ry, or Ra.
- These different alternatives can have different costs.
- Can use disjunctive scheduling or cumulative scheduling (same as the regular
disjunctive / cumulative scheduling, but must respect the alternative resources).

Question by Daniel D.: If workers are not equal, for example one can do a task faster,
can this be represented with alternative resources?
Answer: Yes: the alternative resources can have different costs. However, might not be
able to use cumulative scheduling (cumulative schedule can combine resources into
one, which might not be acceptable if the workers are different).

As for modeling different time, when the duration depends on the resource the
activity is being executed. You would have to enrich the model to not only focus on cost
of resource, but also consider the time.

Reservoir Resource: (also called consumable / producible resource): Model the resources
as consume and/or produce an activity
- When a resource consumes an activity, its resource decreases (taking up resources)
- When a resource produces an activity, the capacity increases (freeing up resources)
- Cumulative resource is a special case of reservoir
- Example of reservoir resource is a gas station. Cars come in, take gas, reservoir goes
down. Gas truck eventually comes and re-fills the reservoir.

Calendars: (also called breakable activities): resources governed by calendar, and the
calendar consists of breaks (e.g., Spring Break at UNL)

State Resources: resources have infinite capacity with varying state over time (need to
know what state you are in to know what can be scheduled)

Examples

Below we cover multiple examples: timetabling, and machine scheduling (disjunctive and
cumulative).

Timetabling

Create a schedule of N periods for classes, where classes have a given duration, lecturer,
number of enrolled students, and prohibited time periods (e.g., Do not schedule grad
students during colloquiums). There are M classrooms with specified seat capacities, and
some classes creating a curriculum (cannot schedule these classes at the same time, for
example, a course and its lab might make up a curriculum).

How the problem is modeled:
Class A is an activity with a given duration (e.g., our class is Constraint Processing Class).
Initially a class can occur at any time: start(A) = {0,1,...,, N-1}.

Constraint specifying start(A) #+ prohibited(A)

Classrooms are resources. Order the classrooms by seat capacities.

Alternative resource constraints for the classes: altern(A) = {k,..,, M-1} (where k is
the smallest classroom where the class size fits).

Teaching represents a disjunctive resource: lecturer can only teach one class at a
time (no overlap), all classes of each lecturer are constrained by unary resource
constraints.

Curriculum represents a unary resource, where classes of one curriculum define one
unary resource constraint.

At most one course can be taught at any classroom at each time slot (unary
resource)

Machine scheduling with disjunctive scheduling
Given a set of tasks with [r,d] and proc, a set of precedence constraint from graph, and one
machine of unary capacity, want to create a schedule while minimizing the makespan.

Critical Path: sequence of tasks that takes the longest time (makespan cannot be below
this value). In Figure 11, the critical path is F=E—C, processing time = 19.

A 0 10 2
B 0 15 3
C 5 25 4
D 0 20 1
E 10 25 5
F 0 5 3

Figure 11: An example illustrating machine scheduling.

We can make a Gantt Chart, which shows the start/stop time of the schedule:

F [A [p] B [| E ¢]

0

3 5 6 9 10 15 19

Variables: Start time start(T) for each task. start(T) = {r(T), ..., d(T)-proc(T)}
Domains: A: [0,8]; B: [0,12]; C: [5,21]; D: [0,19]; E: [10,20]; F: [0,2]
Constraints:

Precedence constraints: For all A < B, start(A) + proc(A) < B.

Unary constraints: For all tasks need to satisfy the start(A) and proc(A).

Because we have one resource, we want to create a serial schedule, add a global
serialize constraint.

Minimize makespan, so add L after C. C + 4 < L; minimize(makespan) = minimize(L).

Machine scheduling with cumulative scheduling

Problem is the same as the disjunctive scheduling, except we have a capacity 3 for our
resource (run up to 3 activities at the same time).

- Capacity for the resource is the capacity that the resource can take
- Capacity for an activity is really like the load on the resource that it uses. (For this

example, need to have the whole capacity available.)

- Figure 12 updates the machine learning example to use capacities.

moo o >

F

o [l O IS

1
0

o

10
15
25
20
25
5

A = B WON

3

cap(T)

1

N N W NN

Figure 12: Expanding the machine scheduling example with a capacity.

In addition to the unary constraints from before (enforces start time, etc.), add a new
cumulative constraint: cumulative({Activities}, {proc()}, {cap()}, MachineCapacity) =
cumulative([A,B,C,D,EF], [2,3,4,1,5,3], [1,2,2,3,2,2],3), which enforces the load at a given

time.

bl A [| | |

E

C

Disjunctive Propagation

8

9

10 11 12

13 14 15 16 17 18 19

First, we discuss disjunctive constraint propagation, edge finding, then “not-first” and “not-
last” rules, focusing on disjunctive scheduling constraints (resources cannot overlap), and

unary resources (only one resource).

Disjunctive constraint propagation

Two activities A; and Aj requiring the same unary resource cannot overlap in time.
Therefore either A; < Aj or Aj € Ai. Therefore, we want to maintain arc-B-Consistency on
the formula: [end(A)) < start(4;)] V [end(4)) < start(Ai)].

—

Whenever eet(Ai) = Ist(4;), Ai cannot precede Aj, therefore Aj < Ai. aoya) 1sn) oAl Ict(A)
Whenever eet(Aj) = Ist(Ai), Aj cannot precede A;, therefore A; < A;. est{s) IE(B) eet() k

Edge Finding

Figure 13: eet(A)=z Ist(B), therefore BK.

In a given set (), decide that some activities must, can, or cannot execute first (or last) in Q,
which leads to new ordering relations (edges in the graph representing possible
orderings). Different variants exist, but the one studied here is:

Va Va,ga [daugay —re <pa+pi] = [4: < Q1
Va Va,¢a [da —rauga;y < pa+pil = [4i > QD

> y > ’ /
Va Vaga [Ai > Q] = [start(Ai) > | ;rég@ég(m +por)|4

Where rq, do, and pa denote the smallest of the earliest start times, the largest of the latest
ends times, and the sum of the minimal processing times of the activities in (, respectively.

Consider the example shown in Figure 14, where Q0 = {B}. By equation 1, when A=A, dqo
1)=20, ro=7, pa=6, pa=9, then 20-7 < 6+9 = 13 < 15 (typo on slide 38), which means that A
must come first. Filtering end(A) with equation 3, yields that the ending time of A must be
20-6=14 (typo on slide 38). The bounds of B will stay the same, however, they will be
updated after arc-B-consistency.

3 . | N
T o -}

Figure 14: Example illustrating edge finding, where the bounds of A can be adjusted.

“Not-First” and “not-last” rules

Edge finding can only tell us if a must, can, or cannot execute first. However, we might run
into a situation where we want to determine an activity cannot be first and cannot be last.
The application is similar to edge-finding, but considering a different set of rules:

Va Vagea [da, —ra < pa + pi| = [end(A;) < %lgé Istp) 1
Va Va,¢a [da —ra, <pa+ pi] = [start(A;) > Iéielg eetp]2

Consider the example shown in Figure 14, where = {B,C}. By equation 1, when A;j=A,
da=20, pa=8, ra=7, pa=10, then 20-7=13<10+8=18, which means A must be before the latest
start time of the any activity in (). Therefore, the new ending time of A is 15 (typo on Slide

41).
e | e i

20

9 20 # 9 20

Figure 15: Example illustrating the "not-first" and "not-last" rule.

Conjunctive Propagation

First, we talk about timetable constraints, disjunctive constraints, then energy reasoning.
Arc-B-consistency is enforcing arc-consistency on the bounds of an interval (will not break
up the interval).

Timetable Constraints
Timetable is used to maintain information about resource utilization and resource
availability over time. Apply arc-B-consistency on the formula:

cap(4;) < cap(R)

Aj| start(A;)<t<end(4A;)

Disjunctive Constraint
Ai and Aj are two activities such that ¢; + ¢; > cap(R), and therefore they cannot overlap in
time and either A; < Aj, or Aj < Ai. Apply arc-B-consistency on the formula:

[cap(Ai) + cap(4j) < cap(R)] V [end(A)) < start(A;)] V [end(4)) < start(Ai)]

Energy Reasoning
The goal in energy reasoning is to determine how much capacity the resources will require
at a minimum to process a given time interval, [ty,t2).

The Left-Shift/Right-Shift, for an activity A; and time interval [t;,t2), denoted Wsh(Ajt1,t2), is
the ci times minimum of the three durations:
1. t2-t1
2. pit(t1) = max(0, pi - max(0,ti-r;)): the number of time units during which A; executes
after time t1 if A; is left-shifted (i.e., scheduled as soon as possible).
3. pi(tz) = max(0, pi - max(0, di-t2)): the number of time units during which A; executes
before time t; if A; is right shifted (i.e., scheduled as late as possible).
Consider the example shown in Figure 16, for a task A; find the energy consumption over
[2,7). Computing Wsn(A1,2,7) = 2- min(5,5,4)=8, a minimum of 8 energy units must be
consumed by Aj in the time interval [2,7)
ri| di |pi|ec
4, [0]10]72
Left Shift
Right Shift

Wsi(41,2,7) L]

Figure 16: Computing the energy consumption of a task A: over [2,7).

The Left-Shift/Right-Shift for a time interval [t,t2), denoted W(ty,t2), is the sum over all the
activities Aj, WSh(Ai,tl,tz).

Conjunctive Reasoning between Temporal and Resource Constraints
Precedence graph: Temporal network representing the relations between the time points
of all activities (start and end times) using Point Algebra is maintained during search.

For example, end(Aj) < start(A;) adds to the precedence graph the relation e; < s;.
During search, additional precedence relations can be added as decisions or as the result of
constraint propagation.

Energy precedence constraint: For a given activity A;, ensures that every subset of
predecessor activities of Aj, ¢, the resource provides enough energy to execute all the
activities in ¢ between ry and s;.

Solving using Optimization

Criterion (or multiple criteria)

Regular (e.g., makespan): If the criteria increases with the end time of the activities, then if
solution S is strictly better than Sz, replace value of criterion obtained by replacing each
end time variable by its lower bound.

Sequence-dependent: Depends only on the relative order in which activities are executed.
Want to solve resource constraints by ordering activities, once activities are sequenced, the
earliest start and end times that result from constraint propagation can be used in a
solution.

Other: If the optimization criteria are more difficult to optimize. It is often the case that
once the resource constraints have been solved by sequencing activities, a linear program
can be used to determine optimal solution. Therefore, use hybrid algorithms based on both
CP and Mixed Integer Programming (MIP).

Local Search
Two types of local moves, repair and shuffle:
1. repair: swap two activities to shrink / reduce number of critical paths.
2. shuffle: move part of the solution and search through the rest of the solution space
to complete it.

Mixed Integer Programming:

Hybrid combination of CP and MIP, use CP techniques to limit and select the explored
branches, and MIP for solving the problem.

