Scribe Notes: 2/13/2013

Presenter: Tony Schnider
Scribe: Nate Stender
Topic: Soft Constraints (Ch. 9 of CP handbook)

Soft Constraints

Motivation

Soft constraints are used:
1. When we seek to find the best (optimal) solution to a problem,
2. When there are probabilistic constraints, or

3. When a problem is over-constrained (seek to satisfy as many constraints as possible).

In order to find the optimal solution, the entire search space must be searched. This problem is at least
as hard a classical CSPs (a classical CSP can always be represented by one with soft constraints).

The speaker discussed two types of frameworks for soft constraints and two types of algorithms:
A. Specific frameworks: fuzzy & weighted
B. Local consistency
C. Generic frameworks: semiring-based & valued
D. Systematic search

Al. Fuzzy Sets

In usual set theory, any value of a set either belongs to the set or does not. In a fuzzy set, we ask "How
much does this value belong to this set?" The value for the set can be 0: doesn't belong, 1: does belong,
or between 0 and 1: for some degree of belonging.

A fuzzy constraint assigns every possible tuple in a relation a membership degree. The function
that determines the degree of membership for a value/tuple is called a membership function. Thus, in
fuzzy CSPs, the ‘weights’ are assigned to the individual tuples of a relation.

Fuzzy constraints are combined using conjunctive combination (Ry @ Ry,). This combination amounts to
taking the Cartesian product of the two relations choosing for a tuple the minimum value among the
membership functions.

Question from Daniel G: Why do we want the minimum value when combining fuzzy constraints?

Answer: Because we want to find the “weakest link” to keep for the constraint. For example, if we want
to maximize the happiness of all people, it is not fair to average because then some people would end

up very happy, and some would end up very unhappy. We want to maximize the minimum happiness.

The satisfaction rate of an assignment is determined by the least satisfied constraint (the minimum
membership degree). Any assignment with a non-zero satisfaction rate is considered a solution, and the
solution with the maximum satisfaction rate is optimal.

Advantages:
* Good for applications where the system is only as good as its weakest link.
* A fuzzy CSP can fully represent a classical CSP
¢ Can change the comparison operator (from min) to represent other situations.
Disadvantages:
* We can have a tie between two "optimal solutions"”, even though one solution is better on
specific constraints. (The decision is blinded by the minimum of both.)

* Solution, sort individual constraints by value and then break ties in that order.

A2. Weighted Constraints

* A weighted constraint network (WCSP) is a CSP with weighted constraints.
* The cost of an assignment in the WCSP is the number of violated constraints.
* The optimal solution with a complete assignment with minimal cost (and thus the least

amount of violated constraints).

* k-weighted constraints are weighted constraints with the addition of an upper bound on the
acceptable cost for a solution.

* By adding a limit, k-weighted CSPs can be tested for consistency, instead of just taking the best
solution.

B. Local Consistency in Soft Constraints

Local consistency is more difficult in SCSPs than in (crisp) CSPs because a violated constraint does not
indicate inconsistency. Thus, values can be pruned only when they are node inconsistent, not when they
are arc inconsistent.
* Avalue is node consistent if it is below an upper limit T.
* Avalue is arc-consistent if it is node consistent, and it has at least one support in its neighboring
variable s.t. the cost of the tuple in the constraint equals a lower limit L.

Question by Robert: Is there ever a time when L is greater than 0?

Answer: Not sure, but for representation purposes you could always normalize L to 0 by subtracting its
value from each weight.

In order to enforce arc consistency, we push the costs of binary constraints onto the unary constraints.
To do this, the minimum cost of the binary variable is added to the unary constraint of one of the
participating variables and then subtracted from the binary constraint. Adding and subtracting to
constraint weights has a special meaning in WCSPs:

WOb = a—b :a#k Lmp_dath ratb<k
k ca=k)k ca+b>k

In this way, the cost of binary constraints is passed to the unary constraints, and thus node consistency
can be used to enforce arc consistency. One problem that can arise from this method is that the order of
evaluation (node pruning) may produce different structures in the CSP:

Figure 1: Example of difference CSP structures due to different orders of evaluation

Question by Nate: Are there heuristics for selecting the order of pruning?

Answer: None mentioned in the paper, but there could be work done on this topic since the paper was
published.

W-AC3 and W-AC2001 algorithms are similar to their hard-CSP counterparts. They have an added step of
making variables arc-consistent by forcing support for arc consistency. In addition, variables must be

rechecked for node consistency whenever they are modified.

C. Generic Soft Constraint Frameworks

The goal of developing generic frameworks for SCSPs is to allow:
1. the development of generic algorithms that will work on all types of soft constraints, instead of
having to create a new one for each type. And
2. the easy comparison between the frameworks.

For SCSPs, two main generic frameworks have been developed: semiring-based constraints and valued

constraints.

Before we discuss semirings, | would like to introduce some terminology from algebra (answering

instructor’s question:

* A group (S,*) is a set S with an operation * such * Aring (S,+,%) is a set S and two operations * and +
that the operation * satisfies the following such that
conditions: o (S,+) is an Abelian group (+ is closed,
o Closure (x,y ES= x*y&S) associative, has identity element, invertible,
o Associativity ((x*y)*z= x*(y*z)) and commutative)
o Identity=idempotent (3 e€S, x*e=e*x=x) o *is associative ((x*y)*z= x*(y*z))
o Invertible (V x€S 3 y€S s.t. x*y=y*x=e) o *distributes over + that is: x*(y+z)= (x*y)+(x*z)
* An Abelian group (S, *) (or a commutative group) o Often, * is required to have an identity element
is a group that is also commutative (x*y=y*x). * A semiring (S,+,*) is a ring where

o + is not invertible
o * has an annihilator

C1. c-Semirings

A c-Semiring (constraint semiring) is a tuple (E,+,%;,0,1) with the following properties:
* Eisaset of satisfaction degrees where O€E, 1€E
* Operator + : is associative, commutative, and idempotent; closed in E; has 0 as a neutral
element and 1 as an annihilator
* Operator x : is associative and commutative; is closed in E; has 1 as a neutral element and 0 as
an annihilator

e x distributes over +;

c-Semiring operators

xsisused to combine preferences
Let:
* Rcbe completely satisfied
* Ry be completely unsatisfied

* R;have satisfaction degree /

* valy(R) be the preference level of relation R

Then:

* valy(R¢) xsvals(Ry)=0
* val(R¢) xsvaly(R) =1

* valyR) xsvaly(R) =1

+, is used to order preference levels
Let a and b be two preference levels:
* a+,b=a b<;a
* a+,b=b a<sb

* a+sb=canda#c, b#c incomparable

Satisfaction level (s, c, t)

(1.0, 0, 0)
(0.75, 50, 400) (0.5, 40, 800)

(0.5, 50, o) (0.4, 40, 900)
(0.0, o0, o0}

Figure 2: Hasse Diagram

+, Induces a partial ordering over preferences, specifically a lattice where + is the least upper bound

(LUB) of {a,b}.

c-Semirings can be partially ordered based on their level of satisfaction. Partial ordering allows multiple

criteria to be optimized. Partial ordering can be represented using a Hasse diagram, as seen in Figure 2.

In a Hasse diagram the higher a node is, the more satisfied it is.

A semiring constraint network is a tuple (X,D,C,S) where:

e X, D:same as in classical CSPs
e (Cis a set of soft constraints

* S=(E+x,0,1) is a c-semiring

Questions Choueiry: what is the difference between c-semiring and semiring:

Answer: c stands for constraints

C2. Valued Constraints

Valued constraints are an alternative framework to semiring-based constraints that use a valuation

structure instead of a semiring.

A valuation structure is a tuple (E,®,<., 1, T) where
* Eisaset of values totally ordered by <,
* | isaminimum elementinE
* T isamaximum elementinE
* @ isan operator which
o is associative, commutative, and monotonic
o isclosedinE
o Has | asaneutral element and T as an annihilator

Monotonicity induces total ordering: a <,b — ((a @® ¢) <, (b D ¢))

Valuation structures are totally ordered, and thus they are less expressive than semirings, which can be
partially ordered. Thus, a valuation structure can always be represented by a semiring. Alternatively, a
semiring can only be represented by a valuation structure if the semiring is totally ordered.

C3. Operations on Soft Constraints

Soft constraints can be combined (or joined) without information loss. In a join, every possible tuple
resulting from the combination is generated, and the membership function value is the minimum of the

combined tuple values.

When soft constraints are projected over a variable (a variable is eliminated from the constraint) the
membership function value is the maximum of the equivalent remaining tuples.

C4. Soft Constraint Solutions

Projecting the soft constraint over nothing, we get the maximum values, which is the network's

consistency level.

As long as the preference level is above 0, then an assignment is complete (i.e., acceptable). The optimal

solution is one s.t. no other assignment has a better consistency level.

Question Fikayo: Is it possible to have negative numbers in the tuples?

Answers: No, not directly, as this would break the minimum operation having 0 as the annihilator.

D. Search in Soft CSPs

There are two basic categories of search in CSPs.
1. Systematic search explores the entire search space and is guaranteed to find the optimal
solution, but is usually too costly to perform.
2. Local search is more feasible because it is limited in resources (usually time), but it may not find
the best solution.
Hybrid approaches can be used to take some benefit from both approaches.

A basic form of systematic search is depth-first branch-and-bound (DFBB). DFBB explores the search
space in an DFS manner, while keeping track of an upper and lower bound. At any given level in the
search, if a partial assignment's lower bound is greater than the upper bound (assuming a minimization

task), search backtracks.

Most improvement on DFBB focuses on generating better lower-bound estimates. One such method is
using partial forward checking (PFC) to generate a tighter bound by adding information from unassigned
variables. PFC can be further improved by applying directional arc inconsistency (DAI) to include costs
from completely unassigned constraints. One caveat to DAl is that it requires a static variable ordering.

