Scribe Notes: 2/13/2013

Presenter: Dr. Berthe Y. Choueiry
Scribe: Nate Stender
Topic: Directional Constency (Ch. 4 of Dechter book)

Dechter's Slides® for Chapter 4 (Slides 31-37)
Slide 31 - Adaptive-consistency, bucket-elimination
Adaptive-consistency algorithm

* Input: a constraint network R and an elimination ordering d.

¢ Qutput: a backtrack-free network E4(R) along d, if the empty constant was not generated. If

empty constraint was generated, problem is inconsistent.

ADAPTIVE-CONSISTENCY (AC)"

Input: a constraint network R, an ordering d = ( z1,... ,Z5)
output: A backtrack-free network, denoted E4(R), along d, if the empty constraint
was not generated. Else, the problem is inconsistent
1. Partition constraints into bucket,, ... , bucket, as follows:
for : «— n downto 1, put in bucket; all unplaced constraints
mentioning z;.

2. for p — n downto 1 do
3. for all the constraints Rg,, ..., Rg, in bucket, do
4. A — Uiy 8i — {zp}
5. Ry — Tl4(X_; Rs,)
6. if R4 is not the empty relation then add R4 to the bucket of the
latest variable in scope A,
7. else exit and return the empty network
8. return E4(R) = (X, D, bucket; U bucketa U - - - U buckety )
Figure 1: Dechter's adaptive-consistency algorithm
Comments:

* This algorithm is an example of dynamic programming:

* Problem is broken into sub-problems, and information is passed between the sub-problems

¢ Usually the goal of dynamic programming is to optimize a function

* We can apply this algorithm to Bayesian networks to find an optimal solution (the most
probable explanation, MPE).

¢ Chapter 13 describes bucket elimination for solving optimization problems. Chapter 14
describes the application of bucket elimination for solving probabilistic networks



Slide 32 - Adaptive-consistency, bucket-elimination (example)

Contrasting DPC, DiC and Adaptive Consistency (ADC)

In DPC, given an ordering, generate binary constraints between all possible pairs of parents of
the node(moralize the graph).

In DiC, given an ordering, generate all possible constraints of arity (i-1) over the parents of the
node.

In ADC, given an ordering, we take all constraints between a node and its parents, join them, ad
project them over the parents, generating a new constraint involving all of the parents of (arity

same as number of parents). Guarantees tractability.

Tony and Daniel D. participated in a board example of bucket elimination

Complexity:

Time complexity is determined by the largest arity constraint generated: O(n(exp)w*(d))
=> O(n(k)w*(d)“)

Space complexity is determined by the largest arity constraint stored.

Both complexities are improved by selecting an ordering with the smallest induced width (which

will generate smaller maximum for arity of constraints).

Slide 33 - Properties of bucket-elimination (adaptive consistency)

Generates a backtrack-free constraint network.

Time complexity: O(n(Zk)W*“) (this is a refinement of time complexity mentioned before)
Space complexity: 0(n(k)¥" *1)

Special cases: trees (w*=1), series-parallel networks (w*=2), and in general k-trees (w*=k).

Partial answer to question by Daniel Dobos (https://piazza.com/class#spring2013/csce921/20) about k-

trees:

Question: Section 4.1.3 covers k-trees, then the book never mentions them again. Is there anything else

Answer:

we should know about these, or was the section just included for completeness?
k-trees are mentioned because they can be used with ACD to provide a tractable solution.

Slides 34 & 35 (moved over quickly because we have already covered them)

Slide 36 - Summary: directional i-consistency

Adaptive-consistency - creates constraint between all parents
Directional path-consistency - creates a binary constraint between all pairs of parents

Directional arc-consistency - filters domains of all parents



Slide 37 - Variable Elimination

Full example of Bucket-elimination. Note that after one pass through the elimination order, the network
can now be solved in a backtrack-free manner in the order. Now a solution can be created by assigning
values to the variables in the instantiation ordering, which is the reverse of the elimination ordering.

B2y

eliminating E

Figure 2: Full example of Bucket-elimination, followed by variable instantiation



