Scribe Notes:1/28/2013Presenter:Dr. Berthe Y. ChoueiryScribe:Nate StenderTopic:Temporal Reasoning (Ch. 12 of Dechter book)

Question by Daniel Dobbs:

How do we know when a constraint is convex?

a. In a CSP, we can look at the bit-matrix representation of the binary constraints:

ΓO	1	1	0]	ΓO	0	1	1]
1	1	1	$\begin{bmatrix} 0\\1\\1 \end{bmatrix} \rightarrow$	1	1	1	1
l_1	0	0	1	l_1	1	0	0]

If we can swap rows in the bit-matrix representation such that all of the ones in each row are consecutive (consecutive-ones property), then we say that the constraints are <u>row convex</u>.¹ If the constraints remain row convex after enforcing consistency (a posteriori condition), then a known result guarantees that PC => Minimality => Decomposable.²

b. In a CSP where constraints or domains can be arranged as intervals with a total ordering and that those intervals are not fragmented by the operations of enforcing consistency (composition and intersection), then the constraints are convex.

Temporal Reasoning: △**STP**

The algorithm:

- Is a refinement of the algorithm for PPC³
- Works by updating all edges in a triangle at every propagation step
- Changes are propagated to adjacent triangles

Advantages of Δ STP

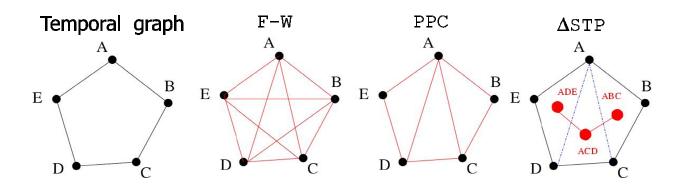
- Cheaper than PPC and F-W (empirical proof)
- Guarantees the minimal network
- Automatically decomposes graph into its bi-connected components
 - Binds effort in the size of the largest component

¹ See textbook page 231—237.

² On the Minimality and Decomposability of Row-Convex Constraint Networks, Peter van Beek and Rina Dechter, *Journal of the ACM*, Vol 42(3). Pages 543—561. 1995

³ Path Consistency on Triangulated Constraint Graphs, Christian Bliek and Djamila Sam-Haroud, *Proceedings of IJCAI 1999*. Pages 456—461. 1999.

- Allows for parallelization
- Sweep through back and forth (relation to tree decomposition made by N. Wilson in 2005).



Recent Advances in \triangle STP ⁴

- Exploit structure
 - o Order variables linearly
 - Use a PEO (bottom-up ordering) or Max Cardinality ordering (top down ordering)
- Apply Directional Path Consistency (Ch 4. Dechter): Determines consistency
- Propagate down: Provides minimal network

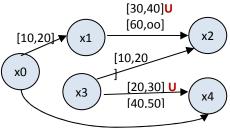
Temporal Reasoning: Solving the TCSP

Review of TCSP

- Variables represent time points, each with a continuous domain
- Each constraint is a disjunction of intervals
- Solution is an assignment which does not violate any constraints
- Deciding consistency of a TCSP instance is NP-complete

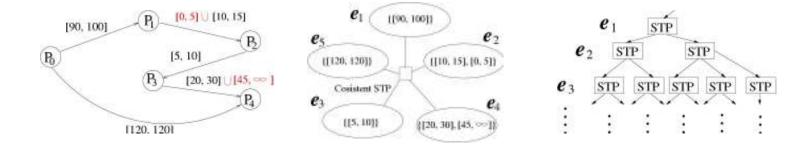
Solving the TCSP

- Formulate TCSP as meta-CSP
- Find all solutions to the meta-CSP
- Use ULT (Dechter's textbook), or Δ STP to solve the individual STPs efficiently (Xu Lin's CP 2003)



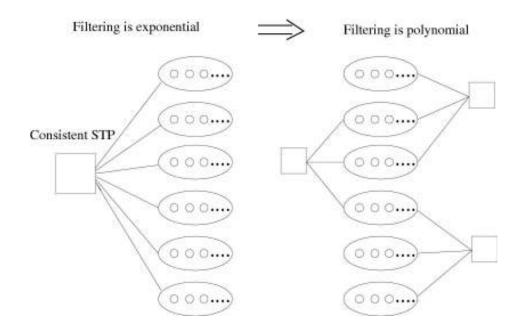
^[60,70]

⁴ P3C: A New Algorithm for the Simple Temporal Problem, Leon Planken, Mathijs de Weerdt, Roman van der Krogt *Proceedings of ICAPS 2008*, Pages 256—263. 2008.



Preprocessing the TCSP

- Arc consistency on the meta-CSP (with GAC) is NP-hard because it corresponds to solving the TCSP
- Use ΔAC to filter the domains of TCSP with ternary constraints
- ΔAC removes values that are not supported in the ternary constraint.



 Δ STP is very effective at low density, Δ AC is very effective at high density. We can combine them to create a powerful tool.