
	
  
Speaker:	
  	
   Zion	
  Schell	
   	
   Monday,	
  April	
  15,	
  2013	
  
Scribe:	
  	
   Fikayo	
  Adetunji	
  
Topic:	
  	
   Tractable	
  Constraint	
  Languages	
  by	
  David	
  Cohen	
  and	
  Peter	
  Jeavons	
  	
  
Reference:	
   Chapter	
  11	
  of	
  the	
  CP	
  book	
  by	
  Rina	
  Dechter	
  
	
  

	
  

Table	
  1:	
  A	
  table	
  showing	
  the	
  tractability	
  of	
  some	
  problems.	
  

Introduction	
  
 
The speaker Zion started the class by alerting us that the topic was significantly different from 
anything we had seen before in CP.  For that reason, his goal was to acquaint us with the 
contents of the chapter rather than explaining it to us.   Having read the chapter several times, I 
agreed and thought it was the best that anyone could do. 
He started his presentation by motivating the topic and providing some definitions. After which, 
he introduced the expressiveness and complexity of constraint languages. Finally, he presented 
the idea of hybrid tractability. 
 

Motivation	
  
• Constraint solvers allow a user to define and solve constraint networks by providing a set 

of basic constraints, or constraint primitives, to be declared over variables. 
• The set of constraint primitives form the constraint language of the solver and restrict the 

set of constraint problems handled by the solver. 
• Increasing the expressiveness of the language may increase the complexity of a solver, 

and that of the algorithms embedded in the solver. 
• As a result the design of a constraint language requires a balance between performance 

and expressiveness.  
• This chapter discusses the expressiveness of tractable constraint languages.  

Basic	
  Definitions	
  
• A constraint language is a set of relations. 
• The relational subclass of a constraint language is the set of all CSP instances that use 

only relations from the language. 
• Tractability can be expressed in two ways: 

o A tractable constraint language that has a polynomial algorithm for solving all 
instances using the relational subclass. 

o A relation R is tractable if the language formed by {R} is tractable. 
• The authors relate tractability to constraint arity and domain size of a CSP as shown in 

Table 1.  
 
 

Problem type Domain size Constraint arity Tractability 
2SAT 2 2 Tractable 
3SAT 3 2 Intractable 
Graph 3-coloring 2 3 Intractable 

 
• The constraint arity, domain size, constraint types of a 

constraint language determine its tractability. Figure 1 
illustrates that a problem with a domain size less than or 
equal to two is tractable, else its tractability is not 

Fig.	
  1:	
  A	
  cube	
  that	
  depicts	
  tractability.	
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guaranteed. For example, Horn-SAT is tractable although it allows constraints of 
arbitrary arity. 

 
 

CHiP:	
  An	
  example	
  of	
  an	
  existing	
  constraint	
  language	
  
• It is used for constraint handling in Prolog. 
• Variables’ domains are subset of ℕ (i.e., natural numbers), and are theoretically infinite. 
• Constraints can be of the following types: 

o Domain constraints (unary): E.g., x ≥ a; x ≤ a 
o Arithmetic constraints (unary or binary):	
  E.g.,	
  ax ≠ b; ax = by + c; ax ≤ by + c; ax 
≥ by + c. 

o Compound-arithmetic constraints (n-ary with arbitrary arity): E.g., a1x1 + a2x2 + ... 
+ anxn ≥ by + c, ax1x2...xn ≥ by + c, (a1x1≥b1)∨(a2x2≥b2)∨...∨(anxn≥bn)∨(ay≤b) 

• Enforcing arc-consistency in CHiP allows the generation of backtrack-free solutions 
because CHiP is tractable. 

• Thus, although in CHIP the constraint arity and domain size are not restricted, the 
language remains tractable. Thus, there is more to tractability than the restriction of 
domain size and/or constraint arity to two. 

More	
  examples	
  of	
  	
  a	
  tractable	
  language:	
  The	
  constant	
  language	
  
• The constant language 

o It has a domain set with a single element: 0. 
o It consists of relations that either equal or do not equal 0: 

{(x=0),(x=y=0),(x=y=z=0),...}, {(x≠0)}. 
o Constraints are tested by checking whether variables equal zero. If any variable 

fails, then there is no solution. 
• The max-closed language 

o The domain is a linearly ordered set. Given x and y in the set, one of x and y is 
necesarily greater than the other, i.e., there is no tie between x and y. 

o The language requires any max-closed relations on the domain that are based on 
the function max(a,b) 

§ Can be extended to tuples element-wise: max((a1,a2),(b1,b2)) = 
(max(a1,b1),max(a2,b2)).  

§ Can be expressed with the function’s domain closed. For example: (1,2) 
and (3,4) in the domain implies (2,4) = max((1,2),(3,4)) in the domain. 

• Horn-SAT 
o The variables are Boolean and the domains are {0,1}. 
o Each constraint is a disjunction of negated literals with at most one positive 

literal.  
o A Horn-SAT theory is solvable in P by unit resolution. It can be solved by 

transforming all disjunctions into implications (with only positive literals in each 
implication), where every rule can be fired at most once. 

Expressiveness	
  of	
  constraint	
  languages	
  
• Gadgets are used in the construction of an expressible relation. 



	
  

3	
  
	
  

• Gadgets are CSPs (can be defined with variables, domains, and constraints) that extend a 
language beyond of what it strictly contains. 

• Making new gadgets out of other gadgets is a task that must 
be achieved logically. 

• An example of a gadget is the gadget for equality. This 
problem is depicted in Figure 2, and has a domain of three 
values {r,g,b}. 

o The task is to determine the relation between A and B. 
o The relation is A=B.  The original language does not 

have equality, but the use of this gadget allows us to 
extend the language to express equality. 

o (A,B) is called the construction site of the problem. 
• A gadget is used to define relation, while a construction site is 

the list of variables that the relation is projected on. 
 

Expressiveness	
  of	
  constraint	
  languages:	
  kth-­‐order	
  universal	
  gadget	
  of	
  a	
  constraint	
  language	
  
Q	
  (Uk(Q))	
  

• The domain of Uk(Q) has the same domain as all problems in the relational subclass of Q.  
For example: If Q = {(A=0),(A=1),(A=2)}, then domain(Uk(Q)) = {0,1,2}. 

• The variables of Uk(Q) has one variable for each k-tuple composed of elements in the 
domain of Uk(Q). For example: If k=2 and domain(Uk(Q)) = {0,1,2}, then the variables 
of Uk(Q) = {v00,v01,v02,v10,v11,v12,v20,v21,v22}. 

o The name of a variable is the tuple to which it corresponds. For example: the 
name of v01 is (0,1). 

o The name relation of a list of variables is defined element-wise by variable names. 
For example: (v02,v01,v10,v22) à {(0,0,1,2),(2,1,0,2)}. Figure 3 better explains 
how the name relation is gotten from the variable names. 

 
 

• The relations of Uk(Q): for each relation R in Q, there is a need to find all tuples of 
variables so that when it  is written vertically, the rows spell out some of the tuples of R. 
R is applied to a tuple of variables in Uk(Q), if and only if the name relation of the tuple 
of variables is a subset of R. 

• The universal gadget is not the smallest gadget for all applications. An example can be 
seen in Figure 4.  

Fig.	
  2:	
  Gadget	
  of	
  equality.	
  

Fig.	
  3:	
  How	
  to	
  obtain	
  the	
  name	
  relation	
  from	
  the	
  variable	
  names.	
  



	
  

4	
  
	
  

Fig.	
  6:	
  An	
  example	
  of	
  U2(Q).	
  

Fig.	
  7:	
  An	
  example	
  of	
  U3(Q).	
  

 
• The size of the universal gadget Uk(Q) with domain size d is dk. 
• Uk(Q) can also be used to determine the tractability of Q. 
• The possibility of finding better gadgets in a given constraint language can be further 

more researched.  If the language can be reduced, solutions will be found faster, since 
better gadgets results in faster systems. 

 

Expressiveness	
  of	
  constraint	
  languages:	
  Examples	
  involving	
  Uk(Q)	
  
Given Q = {A⊕B,¬A}: where A⊕B is the “xor” relation ((A,B) in {(0,1),(1,0)} satisfies the 
constraint); ¬A is the “not” relation ((A) in {(0)} satisfies the constraint); and the domain of 
Uk(Q) is Boolean. 
 
Uk(Q) Variables 

(domain 
elements) 

⊕ constraint ¬ constraint Figured examples 

U1(Q) 1-tuples matches (v0,v1) and 
(v1,v0), i.e., the name 
relation of (v0,v1) is 
{(0,1)} 

matches (v0), 
i.e., the name 
relation of 
(v0) is {(0)} 

 

U2(Q) 2-tuples matches (v00,v11), 
(v01,v10), (v10,v01), 
(v11,v00) i.e., the name 
relation of (v00,v11) is 
{(0,1),(0,1)} 

matches 
(v00), i.e., the 
name relation 
of (v00) is 
{(0),(0)} 

 
 

U3(Q) 3-tuples matches (v000,v111), 
(v001,v110), (v010,v101), 
(v011,v100), (v100,v011), 
(v101,v010), (v110,v001), 
(v111,v000) i.e., the name 
relation of (v001,v110) is 
{(0,1),(0,1),(1,0)}. 

matches 
(v000), i.e., 
the name 
relation of 
(v000) is 
{(0),(0),(0)} 

 
 

 

Expressiveness	
  of	
  constraint	
  languages:	
  Theorem	
  11.1	
  (Cohen,	
  Gyssens,	
  Jeavons	
  1996)	
  
Let Q be a constraint language over a finite domain D, and let R be any relation over D. 

Fig.	
  4:	
  An	
  example	
  showing	
  a	
  different	
  range	
  of	
  universal	
  	
  gadget.	
  

Fig.	
  5:	
  An	
  example	
  of	
  U1(Q).	
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Let k be the number of supports in R, and let LR be any list of variables in Uk(Q) whose name 
relation is R. 

• Either Uk(Q) expresses R as a gadget with construction site LR. 
• Or R is not expressible in Q. 
• An example is the determination of how to express (A⇒B) with the constraint language 

Q = {A⊕B,¬A}  
o (A⇒B) formally: (A,B) in {(0,0),(0,1),(1,1)} satisfies the constraint. 
o (A⇒B) has 3 supports, so we use U3(Q). 

• With the use of U3(Q) 
o Look for a pair of variables with the name relation of which is a subset of 

{(0,0),(0,1),(1,1)} from Figure 7. Either the subset expresses the relations as a 
gadget or it can’t be done. 

o Possible answers could be ((0,0,1),(0,1,1)), ((1,0,0),(1,0,1)), i.e., the the 7th and 5th 
variables or the 4th and 3rd variable. 

o If U3(Q) is treated as a gadget with the construction site (v100,v101), the resulting 
viable pairs of relation formed are: {(0,0),(0,1),(1,0),(1,1)}. We get four viable 
pairs because, if one of the variables is set as 1, the other has to be 0 or 1 

o The gadget does not form the relation (A⇒B). 
o It is thus proven that it is not possible to form (A⇒B) from{A⊕B,¬A} i.e., any 

pair of variables chosen would have always failed. There is no need to review all 
variables, only one is enough. 

• The proof of this theorem is very complicated and could be studied from the textbook 
(pages 310-311). 

Complexity	
  of	
  constraint	
  languages:	
  Theorem	
  11.2	
  (Schaefer	
  1978)	
  
Let Q be a Boolean constraint language. Q is tractable if and only if for each R in Q: 

• R allows (0,0,…,0) or (1,1,…,1) 
• R allows disjunctive clauses with at most one negated variable (anti-horn clauses) 
• R allows disjunctive clauses with at most one non-negated variable (horn clauses) 
• R allows disjunctive clauses with at most two variables per clause (2-SAT) 
• R is a set of solutions to linear equations on {0,1} 

While the knowledge of a constraint language with a domain size of two is easy, it is difficult for 
other domain sizes. 

Complexity	
  of	
  constraint	
  languages:	
  Necessary	
  condition	
  for	
  tractability	
  over	
  a	
  finite	
  domain	
  
A necessary condition for a tractable constraint language depends on the classifications of the 
possible types of solutions to the indicator problems, which, are most easily expressed using the 
notion of k-ary operation: 

• A k-ary operation from Dk to D maps all k-tuples of elements of D to members of D. For 
example: 

o addition function (k=2, D=ℕ): +(a,b) maps (a,b) to a+b 
o maximum function (k=2, D=ℝ): max(a,b) maps (a,b) to a or to b 

• Idempotent k-ary operation maps (x,x,…,x) to x for all x. For example: 
o max(a,a) = a 
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• Essentially-unary k-ary operation maps (x1,x2,…,xk) to f(xi) for some f(x) and i. A 
projection is essentially-unary k-ary operation with f(x) = x. We essentially want to map 
a collection of items to only one item. For example: 

o πb(a,b) = b. 
• Semi-projection k-ary operation maps (x1,x2,…,xk) to xi in only some cases. It requires 

that k≥3 and its examples are contrived. 
• Majority operation maps (a,b,c) to its most common element. 
• Affine operation maps (a,b,c) to a+b-1+c, where ⟨D,+ ⟩ is an Abelian group. 
• An Abelian group is a pair ⟨D,+ ⟩   

o D is a domain that contains an identity element i: a + i = a. In D, every element a 
has an inverse a-1 under +: a + a-1 = i. 

o + is an operation on D2 such that D is closed under +, and + is associative and 
commutative. 

Let s be a solution to Uk(Q), the k-ary operation ŝ associated with s is defined as: 
• The value of ŝ(x) is the value assigned to the variable with name x in the solution s. For 

example, given Q = {A⊕B,¬A}, there exists a solution to U3(Q) (Figure 7), where v111 
= 1; v110 = 1; v101 = 1; v100 = 0; v011 = 1; v010 = 0; v001 = 0; v000 = 0. 

§ Then ŝ(1,1,1) = 1, ŝ(1,0,1) = 1, ŝ(0,1,0) = 0, etc. 

Complexity	
  of	
  constraint	
  languages:	
  Theorem	
  11.4	
  
Assuming P≠NP, any tractable constraint language over a finite domain must have a solution to 
its universal gadget associated with either a constant operation, a majority operation, an 
idempotent binary operation, an affine operation, or, a semi-projection. This is necessary but not 
sufficient. 

• From the previous example, we get that ŝ(1,1,1) = ŝ(1,1,0) = ŝ(1,0,1) = ŝ(0,1,1) = 1 
ŝ(1,0,0) = ŝ(0,1,0) = ŝ(0,0,1) = ŝ(0,0,0) = 0. This implies that ŝ is a majority operation 
(because the values are major in the tuples), and as such Q is not tractable. 

• If all solutions to U|D|(Q) are essentially-unary, then Q is NP-complete (corollary). 
o U|D|(Q) has 2|D| = |D||D| variables (tetration), and combinatorial in the number of 

constraints. 
o Finding an exhaustive solution in this case will be very tedious. 

Complexity	
  of	
  constraint	
  languages:	
  Sufficient	
  conditions	
  for	
  tractability	
  
Some sufficient conditions for a tractable constraint language depends on the following 
definitions: 

• A relation R allows an operation w, if w is associated with a solution to Uk({R}). We 
essentially want to take a solution and read it off element by element. 

• Inv(w) is the set of R such that R allows w. 
• An example of constant operations: 

o Let w be any constant operation on D: w(x) = C for all x. 
o Let Q=inv(w): all relations have only one support. 
o Q is always tractable because each constraint determines all variables in its scope, 

and if two constraints disagree, no solution exists (either a constraint is satisfied 
or not). 

o The constant language is categorized under this example. 
• An example of semi-lattice operations: 
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o Let + be any operation which is idempotent, commutative, and associative:      
x+x = x; x+y = y+x; (x+y)+z = x+(y+z) 

o Let Q=inv(+) 
o Q is always tractable and the following procedure finds a solution: 

§ Establish GAC on the problem. 
§ Is any domain is empty (after GAC), no solution exists. 
§ Otherwise, return the solution where for each variable v with domain 

d={d1,d2,…,dk} the value of v is d1+d2+…+dk. 
o Horn-SAT is categorized under this example. 

• An example of near-unanimity operations: 
o Let w be any k-ary operations which requires near-unanimity, i.e., all arguments 

but one must agree (it returns the most common argument): the 3-majority 
operation: w(x,x,y) = w(x,y,x) = w(y,x,x) = x for all x,y 

o 2-SAT is categorized under this example. 
• The basic idea of the examples is that even though the specifics of constraint languages 

vary significantly, the operations associated with solutions to their universal gadgets 
determine quite effectively whether or not a given language is tractable. 

• The necessary and sufficient conditions for tractability are unknown for most cases. 

Hybridization	
  of	
  constraint	
  languages	
  
• Relational subclasses: specific sets of CSPs are determined by their constraint languages. 
• Structural subclasses: specific sets of CSPs are determined by the properties of their 

hypergraphs (tree-structure, clique subgraphs) 
• Hybrid subclasses: specific sets of CSPs are determined by their constraint languages and 

the properties of their hypergraphs. 
• There are no particular heuristics for the tractability of hybrid subclasses. 

Hybridization of constraint languages: Example 
Given any constraint problem C with domain size d and maximum constraint arity r, then if C is 
strong d(r+1)-consistent, it is globally consistent. 

• This subclass is tractable. 
• It is dependent on the language (domain size and constraint arity). 
• It is dependent on the structure (consistency requirements). 

 
 

 
 
 
 


