
	

Speaker:	
 	
 Zion	
 Schell	
 	
 Monday,	
 April	
 15,	
 2013	

Scribe:	
 	
 Fikayo	
 Adetunji	

Topic:	
 	
 Tractable	
 Constraint	
 Languages	
 by	
 David	
 Cohen	
 and	
 Peter	
 Jeavons	
 	

Reference:	
 Chapter	
 11	
 of	
 the	
 CP	
 book	
 by	
 Rina	
 Dechter	

	

	

Table	
 1:	
 A	
 table	
 showing	
 the	
 tractability	
 of	
 some	
 problems.	

Introduction	

The speaker Zion started the class by alerting us that the topic was significantly different from
anything we had seen before in CP. For that reason, his goal was to acquaint us with the
contents of the chapter rather than explaining it to us. Having read the chapter several times, I
agreed and thought it was the best that anyone could do.
He started his presentation by motivating the topic and providing some definitions. After which,
he introduced the expressiveness and complexity of constraint languages. Finally, he presented
the idea of hybrid tractability.

Motivation	

• Constraint solvers allow a user to define and solve constraint networks by providing a set

of basic constraints, or constraint primitives, to be declared over variables.
• The set of constraint primitives form the constraint language of the solver and restrict the

set of constraint problems handled by the solver.
• Increasing the expressiveness of the language may increase the complexity of a solver,

and that of the algorithms embedded in the solver.
• As a result the design of a constraint language requires a balance between performance

and expressiveness.
• This chapter discusses the expressiveness of tractable constraint languages.

Basic	
 Definitions	

• A constraint language is a set of relations.
• The relational subclass of a constraint language is the set of all CSP instances that use

only relations from the language.
• Tractability can be expressed in two ways:

o A tractable constraint language that has a polynomial algorithm for solving all
instances using the relational subclass.

o A relation R is tractable if the language formed by {R} is tractable.
• The authors relate tractability to constraint arity and domain size of a CSP as shown in

Table 1.

Problem type Domain size Constraint arity Tractability
2SAT 2 2 Tractable
3SAT 3 2 Intractable
Graph 3-coloring 2 3 Intractable

• The constraint arity, domain size, constraint types of a

constraint language determine its tractability. Figure 1
illustrates that a problem with a domain size less than or
equal to two is tractable, else its tractability is not

Fig.	
 1:	
 A	
 cube	
 that	
 depicts	
 tractability.	

	

2	

	

guaranteed. For example, Horn-SAT is tractable although it allows constraints of
arbitrary arity.

CHiP:	
 An	
 example	
 of	
 an	
 existing	
 constraint	
 language	

• It is used for constraint handling in Prolog.
• Variables’ domains are subset of ℕ (i.e., natural numbers), and are theoretically infinite.
• Constraints can be of the following types:

o Domain constraints (unary): E.g., x ≥ a; x ≤ a
o Arithmetic constraints (unary or binary):	
 E.g.,	
 ax ≠ b; ax = by + c; ax ≤ by + c; ax
≥ by + c.

o Compound-arithmetic constraints (n-ary with arbitrary arity): E.g., a1x1 + a2x2 + ...
+ anxn ≥ by + c, ax1x2...xn ≥ by + c, (a1x1≥b1)∨(a2x2≥b2)∨...∨(anxn≥bn)∨(ay≤b)

• Enforcing arc-consistency in CHiP allows the generation of backtrack-free solutions
because CHiP is tractable.

• Thus, although in CHIP the constraint arity and domain size are not restricted, the
language remains tractable. Thus, there is more to tractability than the restriction of
domain size and/or constraint arity to two.

More	
 examples	
 of	
 	
 a	
 tractable	
 language:	
 The	
 constant	
 language	

• The constant language

o It has a domain set with a single element: 0.
o It consists of relations that either equal or do not equal 0:

{(x=0),(x=y=0),(x=y=z=0),...}, {(x≠0)}.
o Constraints are tested by checking whether variables equal zero. If any variable

fails, then there is no solution.
• The max-closed language

o The domain is a linearly ordered set. Given x and y in the set, one of x and y is
necesarily greater than the other, i.e., there is no tie between x and y.

o The language requires any max-closed relations on the domain that are based on
the function max(a,b)

§ Can be extended to tuples element-wise: max((a1,a2),(b1,b2)) =
(max(a1,b1),max(a2,b2)).

§ Can be expressed with the function’s domain closed. For example: (1,2)
and (3,4) in the domain implies (2,4) = max((1,2),(3,4)) in the domain.

• Horn-SAT
o The variables are Boolean and the domains are {0,1}.
o Each constraint is a disjunction of negated literals with at most one positive

literal.
o A Horn-SAT theory is solvable in P by unit resolution. It can be solved by

transforming all disjunctions into implications (with only positive literals in each
implication), where every rule can be fired at most once.

Expressiveness	
 of	
 constraint	
 languages	

• Gadgets are used in the construction of an expressible relation.

	

3	

	

• Gadgets are CSPs (can be defined with variables, domains, and constraints) that extend a
language beyond of what it strictly contains.

• Making new gadgets out of other gadgets is a task that must
be achieved logically.

• An example of a gadget is the gadget for equality. This
problem is depicted in Figure 2, and has a domain of three
values {r,g,b}.

o The task is to determine the relation between A and B.
o The relation is A=B. The original language does not

have equality, but the use of this gadget allows us to
extend the language to express equality.

o (A,B) is called the construction site of the problem.
• A gadget is used to define relation, while a construction site is

the list of variables that the relation is projected on.

Expressiveness	
 of	
 constraint	
 languages:	
 kth-­‐order	
 universal	
 gadget	
 of	
 a	
 constraint	
 language	

Q	
 (Uk(Q))	

• The domain of Uk(Q) has the same domain as all problems in the relational subclass of Q.
For example: If Q = {(A=0),(A=1),(A=2)}, then domain(Uk(Q)) = {0,1,2}.

• The variables of Uk(Q) has one variable for each k-tuple composed of elements in the
domain of Uk(Q). For example: If k=2 and domain(Uk(Q)) = {0,1,2}, then the variables
of Uk(Q) = {v00,v01,v02,v10,v11,v12,v20,v21,v22}.

o The name of a variable is the tuple to which it corresponds. For example: the
name of v01 is (0,1).

o The name relation of a list of variables is defined element-wise by variable names.
For example: (v02,v01,v10,v22) à {(0,0,1,2),(2,1,0,2)}. Figure 3 better explains
how the name relation is gotten from the variable names.

• The relations of Uk(Q): for each relation R in Q, there is a need to find all tuples of
variables so that when it is written vertically, the rows spell out some of the tuples of R.
R is applied to a tuple of variables in Uk(Q), if and only if the name relation of the tuple
of variables is a subset of R.

• The universal gadget is not the smallest gadget for all applications. An example can be
seen in Figure 4.

Fig.	
 2:	
 Gadget	
 of	
 equality.	

Fig.	
 3:	
 How	
 to	
 obtain	
 the	
 name	
 relation	
 from	
 the	
 variable	
 names.	

	

4	

	

Fig.	
 6:	
 An	
 example	
 of	
 U2(Q).	

Fig.	
 7:	
 An	
 example	
 of	
 U3(Q).	

• The size of the universal gadget Uk(Q) with domain size d is dk.
• Uk(Q) can also be used to determine the tractability of Q.
• The possibility of finding better gadgets in a given constraint language can be further

more researched. If the language can be reduced, solutions will be found faster, since
better gadgets results in faster systems.

Expressiveness	
 of	
 constraint	
 languages:	
 Examples	
 involving	
 Uk(Q)	

Given Q = {A⊕B,¬A}: where A⊕B is the “xor” relation ((A,B) in {(0,1),(1,0)} satisfies the
constraint); ¬A is the “not” relation ((A) in {(0)} satisfies the constraint); and the domain of
Uk(Q) is Boolean.

Uk(Q) Variables

(domain
elements)

⊕ constraint ¬ constraint Figured examples

U1(Q) 1-tuples matches (v0,v1) and
(v1,v0), i.e., the name
relation of (v0,v1) is
{(0,1)}

matches (v0),
i.e., the name
relation of
(v0) is {(0)}

U2(Q) 2-tuples matches (v00,v11),
(v01,v10), (v10,v01),
(v11,v00) i.e., the name
relation of (v00,v11) is
{(0,1),(0,1)}

matches
(v00), i.e., the
name relation
of (v00) is
{(0),(0)}

U3(Q) 3-tuples matches (v000,v111),
(v001,v110), (v010,v101),
(v011,v100), (v100,v011),
(v101,v010), (v110,v001),
(v111,v000) i.e., the name
relation of (v001,v110) is
{(0,1),(0,1),(1,0)}.

matches
(v000), i.e.,
the name
relation of
(v000) is
{(0),(0),(0)}

Expressiveness	
 of	
 constraint	
 languages:	
 Theorem	
 11.1	
 (Cohen,	
 Gyssens,	
 Jeavons	
 1996)	

Let Q be a constraint language over a finite domain D, and let R be any relation over D.

Fig.	
 4:	
 An	
 example	
 showing	
 a	
 different	
 range	
 of	
 universal	
 	
 gadget.	

Fig.	
 5:	
 An	
 example	
 of	
 U1(Q).	

	

5	

	

Let k be the number of supports in R, and let LR be any list of variables in Uk(Q) whose name
relation is R.

• Either Uk(Q) expresses R as a gadget with construction site LR.
• Or R is not expressible in Q.
• An example is the determination of how to express (A⇒B) with the constraint language

Q = {A⊕B,¬A}
o (A⇒B) formally: (A,B) in {(0,0),(0,1),(1,1)} satisfies the constraint.
o (A⇒B) has 3 supports, so we use U3(Q).

• With the use of U3(Q)
o Look for a pair of variables with the name relation of which is a subset of

{(0,0),(0,1),(1,1)} from Figure 7. Either the subset expresses the relations as a
gadget or it can’t be done.

o Possible answers could be ((0,0,1),(0,1,1)), ((1,0,0),(1,0,1)), i.e., the the 7th and 5th
variables or the 4th and 3rd variable.

o If U3(Q) is treated as a gadget with the construction site (v100,v101), the resulting
viable pairs of relation formed are: {(0,0),(0,1),(1,0),(1,1)}. We get four viable
pairs because, if one of the variables is set as 1, the other has to be 0 or 1

o The gadget does not form the relation (A⇒B).
o It is thus proven that it is not possible to form (A⇒B) from{A⊕B,¬A} i.e., any

pair of variables chosen would have always failed. There is no need to review all
variables, only one is enough.

• The proof of this theorem is very complicated and could be studied from the textbook
(pages 310-311).

Complexity	
 of	
 constraint	
 languages:	
 Theorem	
 11.2	
 (Schaefer	
 1978)	

Let Q be a Boolean constraint language. Q is tractable if and only if for each R in Q:

• R allows (0,0,…,0) or (1,1,…,1)
• R allows disjunctive clauses with at most one negated variable (anti-horn clauses)
• R allows disjunctive clauses with at most one non-negated variable (horn clauses)
• R allows disjunctive clauses with at most two variables per clause (2-SAT)
• R is a set of solutions to linear equations on {0,1}

While the knowledge of a constraint language with a domain size of two is easy, it is difficult for
other domain sizes.

Complexity	
 of	
 constraint	
 languages:	
 Necessary	
 condition	
 for	
 tractability	
 over	
 a	
 finite	
 domain	

A necessary condition for a tractable constraint language depends on the classifications of the
possible types of solutions to the indicator problems, which, are most easily expressed using the
notion of k-ary operation:

• A k-ary operation from Dk to D maps all k-tuples of elements of D to members of D. For
example:

o addition function (k=2, D=ℕ): +(a,b) maps (a,b) to a+b
o maximum function (k=2, D=ℝ): max(a,b) maps (a,b) to a or to b

• Idempotent k-ary operation maps (x,x,…,x) to x for all x. For example:
o max(a,a) = a

	

6	

	

• Essentially-unary k-ary operation maps (x1,x2,…,xk) to f(xi) for some f(x) and i. A
projection is essentially-unary k-ary operation with f(x) = x. We essentially want to map
a collection of items to only one item. For example:

o πb(a,b) = b.
• Semi-projection k-ary operation maps (x1,x2,…,xk) to xi in only some cases. It requires

that k≥3 and its examples are contrived.
• Majority operation maps (a,b,c) to its most common element.
• Affine operation maps (a,b,c) to a+b-1+c, where ⟨D,+ ⟩ is an Abelian group.
• An Abelian group is a pair ⟨D,+ ⟩

o D is a domain that contains an identity element i: a + i = a. In D, every element a
has an inverse a-1 under +: a + a-1 = i.

o + is an operation on D2 such that D is closed under +, and + is associative and
commutative.

Let s be a solution to Uk(Q), the k-ary operation ŝ associated with s is defined as:
• The value of ŝ(x) is the value assigned to the variable with name x in the solution s. For

example, given Q = {A⊕B,¬A}, there exists a solution to U3(Q) (Figure 7), where v111
= 1; v110 = 1; v101 = 1; v100 = 0; v011 = 1; v010 = 0; v001 = 0; v000 = 0.

§ Then ŝ(1,1,1) = 1, ŝ(1,0,1) = 1, ŝ(0,1,0) = 0, etc.

Complexity	
 of	
 constraint	
 languages:	
 Theorem	
 11.4	

Assuming P≠NP, any tractable constraint language over a finite domain must have a solution to
its universal gadget associated with either a constant operation, a majority operation, an
idempotent binary operation, an affine operation, or, a semi-projection. This is necessary but not
sufficient.

• From the previous example, we get that ŝ(1,1,1) = ŝ(1,1,0) = ŝ(1,0,1) = ŝ(0,1,1) = 1
ŝ(1,0,0) = ŝ(0,1,0) = ŝ(0,0,1) = ŝ(0,0,0) = 0. This implies that ŝ is a majority operation
(because the values are major in the tuples), and as such Q is not tractable.

• If all solutions to U|D|(Q) are essentially-unary, then Q is NP-complete (corollary).
o U|D|(Q) has 2|D| = |D||D| variables (tetration), and combinatorial in the number of

constraints.
o Finding an exhaustive solution in this case will be very tedious.

Complexity	
 of	
 constraint	
 languages:	
 Sufficient	
 conditions	
 for	
 tractability	

Some sufficient conditions for a tractable constraint language depends on the following
definitions:

• A relation R allows an operation w, if w is associated with a solution to Uk({R}). We
essentially want to take a solution and read it off element by element.

• Inv(w) is the set of R such that R allows w.
• An example of constant operations:

o Let w be any constant operation on D: w(x) = C for all x.
o Let Q=inv(w): all relations have only one support.
o Q is always tractable because each constraint determines all variables in its scope,

and if two constraints disagree, no solution exists (either a constraint is satisfied
or not).

o The constant language is categorized under this example.
• An example of semi-lattice operations:

	

7	

	

o Let + be any operation which is idempotent, commutative, and associative:
x+x = x; x+y = y+x; (x+y)+z = x+(y+z)

o Let Q=inv(+)
o Q is always tractable and the following procedure finds a solution:

§ Establish GAC on the problem.
§ Is any domain is empty (after GAC), no solution exists.
§ Otherwise, return the solution where for each variable v with domain

d={d1,d2,…,dk} the value of v is d1+d2+…+dk.
o Horn-SAT is categorized under this example.

• An example of near-unanimity operations:
o Let w be any k-ary operations which requires near-unanimity, i.e., all arguments

but one must agree (it returns the most common argument): the 3-majority
operation: w(x,x,y) = w(x,y,x) = w(y,x,x) = x for all x,y

o 2-SAT is categorized under this example.
• The basic idea of the examples is that even though the specifics of constraint languages

vary significantly, the operations associated with solutions to their universal gadgets
determine quite effectively whether or not a given language is tractable.

• The necessary and sufficient conditions for tractability are unknown for most cases.

Hybridization	
 of	
 constraint	
 languages	

• Relational subclasses: specific sets of CSPs are determined by their constraint languages.
• Structural subclasses: specific sets of CSPs are determined by the properties of their

hypergraphs (tree-structure, clique subgraphs)
• Hybrid subclasses: specific sets of CSPs are determined by their constraint languages and

the properties of their hypergraphs.
• There are no particular heuristics for the tractability of hybrid subclasses.

Hybridization of constraint languages: Example
Given any constraint problem C with domain size d and maximum constraint arity r, then if C is
strong d(r+1)-consistent, it is globally consistent.

• This subclass is tractable.
• It is dependent on the language (domain size and constraint arity).
• It is dependent on the structure (consistency requirements).

