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Background:	  
• Goal of the paper: Paper introduces AND/OR search spaces in graphical models, 

discusses compacting by merging subtrees, and explains how to use them for solution 
counting. 

• Applicability of the approach: Graphical models (which include: constraint networks, 
Bayesian networks, Markov random fields, cost networks, and influence diagrams). 

 
Question (Daniel G.): Are constraint networks a subset of reasoning graphical models or just an 
alternate name? In what ways do they differ? How do AND/OR graphs of constraint networks 
differ from AND/OR graphs of reasoning graphical models? 
 
Answer: Graphical networks are general and constraint network is just one of the types of 
graphical networks, and so are Bayesian networks. Below is an example of a Bayesian network: 
 

 
 
Example question: If the sprinkler is on, what is the probability that it is raining?  AND/OR 
graphs should be applicable to many graphical models if not all.  Dechter has applied them to 
CSP and BN.  This lecture focuses on CSPs. 

Introduction	  (Slide	  2):	  
The algorithms used to answer questions on graphical models can be classified into two 
categories:  Inference-based and search-based algorithms 

• Inference-based methods: include variable elimination, bucket elimination, tree-
clustering, etc.  Typically, they are exponential time and space in the tree-width. (Time: 
we need to solve the subproblems. Space: we need to store the unique constraint on the 
separators variables). 
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• Search-based methods: Like BT Search (which is an OR search-space). Space 
requirement is linear (because we store only the current path), and time requirement is 
exponential (CSPs are NP-complete) in terms of the variables. 

 
AND/OR search spaces try to combine these two methods in order to exploit independencies 
during search to explore paths in parallel. In other words, in addition to the search methods of the 
OR space, the AND/OR search-space can also exploit independencies in the graph model to 
bound the space requirements. 

Intuition	  on	  AND/OR	  Search	  (Slide	  3):	  
Consider the constraint graph of a graph-coloring problem below. Fig.1 shows the constraint 
graph; Fig. 2 the OR search space; and Fig. 3 the AND/OR search space.  Notice that variables Y 
and Z are independent of each other.  If we considered them sequentially in backtrack search, we 
may have to consider big jumps back upon backtracking. The AND/OR search will try to avoid 
this situation by considering them independently in an OR node.  In the AND/OR search space: 

• The OR node represents a CSP variable. 
• The AND node represents all the possible instantiations of the parent variable, yielding 

variable-value pairs (vvp’s). 
 

 
 
Terminologies (Slide 5):  
Below we recall some general terminology (see AI course): 
State Space: is the set of all possible states that a system can be at. 
State Graph: It is a directed graph showing all states and transitions (directed edges) between 
states.  
Search tree: is a tree traversal of the state graph. 

Fig.	  1:	  CSP.	  

Fig.	  2:	  OR	  search	  space.	  

Fig.	  3:	  AND/OR	  search.	  
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We define the AND/OR search space based on that terminology. 

AND/OR	  Search	  Space	  (Slide	  6):	  
• 4-tuple (S,O,Sg,So) 
• S: Set of states (OR states and AND states) 
• O: Set of operators.  

o The OR operator transforms an OR state into a disjunction of other states (in the 
example of Fig. 3, X can be assigned 1, 2, or 3). 

o The AND operator transforms an AND state to a conjunction of OR states (in the 
example of Fig. 3, 〈X,1〉 transitions to the conjunction of Y and Z. 

• Sg:  The goal node, where the search stops with a solution 
• So:  The start node, which is node X from the diagram below 

Terminal nodes: are those states without children and are labeled solved or unsolved. 

AND/OR	  Search	  Tree	  (Slide	  7):	  
Given a CSP & a DFS spanning tree T (corresponds to a static variable ordering) of its graph 

• Nodes of T are either: 
o OR nodes, which represent CSP variables, or 
o AND nodes, which represent variable-value pairs (assignments to variables). 

• Successor nodes in T 
o of an OR node X, are all consistent value assignments 〈X,v〉 
o of an AND node 〈X,v〉, are all children nodes of X in T.  

• It helps to think of the combination of an OR node and its AND descendants as a ‘meta-
node’ and count as one node, i.e., OR nodes do not count in the depth of the tree. See fig. 
4 below: 

 
 
We all know how the OR tree in Fig. 2 is generated. Basically, we visit the variables sequentially 
X, Y, T, then R, etc. 
 
For the AND/OR tree in Fig. 3, start at the same root X (as an OR node) and the values that it 
can be assigned (as the AND nodes) to make up a meta-node. Then, we can visit two variables Y 
and Z in parallel.  For that reason, each AND node is directly linked to two OR nodes (one for Y 
and one for Z).  Following in this manner, the AND nodes for the vvps of Y are linked to two 
OR nodes (for each of T and R), while the AND nodes of the vvps of Z are linked to the OR 
nodes to L and M. 

Labeling	  AND/OR	  Search	  Tree	  Nodes	  (Slide	  9):	  
• Label terminal OR nodes as UNSOLVED/0,  
• Label terminal AND nodes as SOLVED/1, 

Think	  of	  it	  
like	  this	  box	  Rather	  than	  these	  

three	  boxes	  	  

Fig.	  4:	  Meta-‐node.	  
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Fig.	  5:	  Labeled	  tree	  nodes.	  

• Label internal OR nodes as 1 iff one of its successor nodes is 1, and  
• Label internal AND as nodes 1 iff all of its successor nodes are 1. 

Counting	  Solutions	  (Slide	  10):	  

 
 

Solutions are counted as follows, proceedings from the leaves of the tree to its root: 
• A terminal AND node is labeled 1.  
• A terminal OR node is labeled 0. 
• An internal AND node is labeled the product of the labels of its children. 
• An internal OR node is labeled the sum of the labels of its children. 
• The final value of the label at the OR root-node is the total number of solutions. 

 
Consider Fig. 5: 

• All shown terminal nodes are labeled 1. 
• OR-node T is labeled 2 because it is connected to two AND nodes (i.e., 〈T,1〉 and 〈T,3〉).  
• 〈Y,2〉 is labeled 4 because the label of the OR-node T is 2 and that of R is 2 (i.e., 2*2=4). 

Legal	  Tree	  of	  a	  Constraint	  Graph	  (Slide	  12):	  
• The legal tree is in fact the pseudo-tree (introduced by Freuder and Quinn in 1985). 
• Given an undirected graph G = (V,E), a directed rooted tree T = (V,E’) defined on all its 

nodes is legal if any edge in E that is not included in E’ is a back-arc (i.e., connects a 
node to an ancestor).  

o The edges in E’ can be from E or not.  
o The edges of E can be in E’ or not. 
o All the edges of E are either in E’ or are back-arcs in T.  

• Many legal trees of a CSP exist. A DFS of a CSP is a legal tree. Any chain is a legal tree.  
See examples in Fig. 6.  

• Searching an OR tree corresponds to searching a chain legal-tree. 
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Dynamic	  Variable	  Ordering	  (Slide	  13):	  
	  

 

	  

 
 
 

• When X=0, the constraints are satisfied for any values of A,B, and C (0→x always holds 
no matter what x is). So we can work on A, B and C in parallel.  

• When X=1, we have to order C first, then A and B can be put in parallel. 
• The paper did not test/empirically evaluate the use of dynamic variable ordering in the 

AND/OR search space. 

Minimal	  AND/OR	  Search	  Spaces	  (Slide	  15):	  
• The minimal AND/OR search-space can be generated by merging OR nodes in the 

AND/OR tree (combining paths). 
• Along two partial paths in the search-space over the same set of variables, if the search 

subtrees rooted at these paths are identical, the subtrees can be merged together. 

When	  X=0,	  no	  active	  
constraints	  in	  the	  subproblem	  

Fig.	  6:	  two	  possible	  resulting	  legal	  trees.	  

Fig.	  7:	  Use	  of	  dynamic	  variable	  ordering.	  
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• Fig. 8 shows an example of a merge of two identical subgraphs rooted at nodes Y. 
• Merging paths always results in a unique minimal AND/OR search-graph regardless of 

the order of application of the merger operator. 

How	  to	  Merge	  Nodes	  (Slide	  16):	  
Merging subtrees can be done after generating all paths, which can be exponential in space. 
Below, we explain how to avoid generating the entire tree. 
Given T, a legal tree, we denote: 

• G  𝒯: the extended graph of G relative to 𝒯,  G  𝒯 = (V,E’∪E) 
• G*  𝒯:  the extended graph of G induced by marrying parents, relative to 𝒯. 
 

 
Fig. 9: Legal tree. 

 
Fig. 10: G  𝒯 Extended graph of 
G relative to 𝒯. 

 

 
Fig. 11: G*𝒯: Extended graph 
of G induced by marrying 
parents, relative to 𝒯. 

 
 

 

Fig.	  8:	  Merging	  identical	  nodes.	  
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For example, in Fig. 11, R and X are parent of Z and married with the addition of the 
edge (R,X).  Likewise, X and T are parent of R are married with the addition of the edge 
(T,X). 

• Parents(psx): {Ancestors of X that have connections in G*𝒯 to X or to descendants of X in 
𝒯}. In Fig. 11, the parent of T psT = {X, Y} because X and Y are parents of T and are 
also the parents of R (descendant of T). 

• Parent-Separator(psax): {X}∪{ancestors of X that have connections in G*𝒯 to descendants 
of X}. In Fig. 11, the parent-separator of T psaT = {X, Y, T} because Y and T are parents 
of R (descendant of T).  

• Nodes can be merged if two paths in the AND/OR graph have the same values as the 
parent-separator. 

Example	  of	  Merging	  Nodes	  (Slide	  17-‐19):	  
• In Fig. 12, there are two paths of assignment, S1 (blue path) and S2 (red path) ending at 

〈X,v〉   (AND node with the value v assigned to some variable X). The matching of the 
ending assignment is important because it determines the possibility of a merge. 

• For every state Si, S[psai] is called the context of Si when psai is the parent-separators set 
of Xi relative to the legal tree T. In Fig. 13, S1 and S2 are contexts. 

• It is possible to merge the similar nodes of two paths when: S1[psax]= S2[psax] 

 
 

• In Fig. 13, S1 and S2 are two conditioned sub-problems (the sub-problem is conditioned 
on the assignment of S1 and S2) that need to be checked for the possibility of a merge. 

• The required outcome is the knowledge of what conditions influence the appearance of 
the sub-trees. These conditions are parent-separators that affect the variables in the sub-
problem. 
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Fig.	  12:	  two	  partial	  paths.	  
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Fig.	  13:	  Two	  conditioned	  sub-‐problems.	  
S1 S2 

Size	  of	  AND/OR	  (Slide	  20):	  
Notations: 

o n: number of variables 
o k: domain size 
o w: induced width of G 𝒯   
o m: depth of legal tree(m ≤ wlog(n)) 

• The space requirement of an AND/OR tree: O(nkwlog(n)). 
• In the minimal AND/OR graph, the depth of the tree is bounded by the induced width: 

O(nkw). 

Solution	  Counting	  Algorithm	  (Slide	  22):	  
The solution counting algorithm is in the original paper and in Robert’s slides (slide 22). The 
algorithm builds the AND/OR tree iteratively and makes use of the structures below: 

• OPEN: stores the unexplored nodes. 
• CLOSE: stores the already explored nodes. 
• G(n): structure used to build values (stores label of node). 
• C(V): stores the context of a node. 

 
 

 

Sub-‐problem	  
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Consider the diagram in Fig. 14: 

1. Take the root-node of the tree and put it in OPEN. 
2. Move the first node from OPEN to CLOSE. 
3. Check whether that node is an AND node or an OR node. If the node has no 

successors/children, then end, otherwise expand it. 
o If the node has children, put them in OPEN. 

4. Propagate: Run the propagation function (which counts the number of solutions rooted at 
a node) on a node only when all of its children have been evaluated. If it is an OR node, 
do the summation of the values of its children, else if it is an AND node, do the product 
of the values of its children. Then go back to the second step and repeat until OPEN is 
empty or all of its nodes are terminal nodes. 

Empirical	  Evaluations	  (Slide	  23):	  
The performances of the following algorithms were compared: AND/OR-spaces, OR-spaces, and 
bucket-elimination (with FC and with relational FC).  The OR-search uses the same methods as 
the AND/OR-search, including merging. The only difference between them is that the AND/OR-
search uses the DFS-tree, while the OR-search uses a chain for search. 

Tests were performed on randomly generated CSPs with ternary constraints for different values 
of tightness and the same number of constraints.  Forward checking filters values only if a 
variable has a constraint with just one future variable. Relational FC filters values even when a 
variable has constraints with more than one future variable. 

• AND/OR-search outperformed OR-search, in terms of time. 
• In BE, CPU time was the same for all values of constraint tightness because it takes the 

same amount of time to join the relations with the same scope but different tightness.   

Fig.	  14:	  AND/OR	  tree	  with	  labels	  open	  and	  closed.	  
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Fig.	  15:	  An	  example	  of	  an	  influence	  diagram.	  

• For all algorithms, as the looseness (incorrectly called tightness in the paper) increases, 
the number of solutions also increases. 

• In the presence of a clique-based tree, the AND/OR-search and the OR-search have the 
same performance, because they will both produce a chain-based clique. 

Use	  of	  Caching	  (Slide	  25)	  
Caching refers to the record of no-goods. If the current node is an OR node that has no consistent 
successors, it is identified as a dead-end and a no-good is recorded, resulting in a new constraint. 
The set of constraints are modified to include this new constraint. 

• Caching is not used in BE because it required too much space. 
• Caching in AND/OR-search required very little time. 
• Time requirement for caching in OR-search increased exponentially, with increase in 

tightness. 
• The same results occurred for the number of nodes visited and the number of dead ends. 

Extra	  Material	  (Slide	  29):	  
• Influence diagrams: They are a generalization of the Bayesian network. 
• Chance and decision are the two types of nodes the influence diagram can have. There is 

no decision-node in a Bayesian network. 

 
 

• Fig. 15 illustrates an influence-diagram example, where the goal is to make a smart 
decision about drilling for oil in a land area.  

 


