
Title: The Impact of AND/OR Search On Constraint Satisfaction and Counting
Authors: Dechter and Mateesa, CP 2004, pages 731-736, 2004
Speaker: Robert Woodward
Scribe: Olufikayo Adetunji
Date: 03/04+06/2013
	

Background:	

• Goal of the paper: Paper introduces AND/OR search spaces in graphical models,

discusses compacting by merging subtrees, and explains how to use them for solution
counting.

• Applicability of the approach: Graphical models (which include: constraint networks,
Bayesian networks, Markov random fields, cost networks, and influence diagrams).

Question (Daniel G.): Are constraint networks a subset of reasoning graphical models or just an
alternate name? In what ways do they differ? How do AND/OR graphs of constraint networks
differ from AND/OR graphs of reasoning graphical models?

Answer: Graphical networks are general and constraint network is just one of the types of
graphical networks, and so are Bayesian networks. Below is an example of a Bayesian network:

Example question: If the sprinkler is on, what is the probability that it is raining? AND/OR
graphs should be applicable to many graphical models if not all. Dechter has applied them to
CSP and BN. This lecture focuses on CSPs.

Introduction	
 (Slide	
 2):	

The algorithms used to answer questions on graphical models can be classified into two
categories: Inference-based and search-based algorithms

• Inference-based methods: include variable elimination, bucket elimination, tree-
clustering, etc. Typically, they are exponential time and space in the tree-width. (Time:
we need to solve the subproblems. Space: we need to store the unique constraint on the
separators variables).

2	

	

• Search-based methods: Like BT Search (which is an OR search-space). Space
requirement is linear (because we store only the current path), and time requirement is
exponential (CSPs are NP-complete) in terms of the variables.

AND/OR search spaces try to combine these two methods in order to exploit independencies
during search to explore paths in parallel. In other words, in addition to the search methods of the
OR space, the AND/OR search-space can also exploit independencies in the graph model to
bound the space requirements.

Intuition	
 on	
 AND/OR	
 Search	
 (Slide	
 3):	

Consider the constraint graph of a graph-coloring problem below. Fig.1 shows the constraint
graph; Fig. 2 the OR search space; and Fig. 3 the AND/OR search space. Notice that variables Y
and Z are independent of each other. If we considered them sequentially in backtrack search, we
may have to consider big jumps back upon backtracking. The AND/OR search will try to avoid
this situation by considering them independently in an OR node. In the AND/OR search space:

• The OR node represents a CSP variable.
• The AND node represents all the possible instantiations of the parent variable, yielding

variable-value pairs (vvp’s).

Terminologies (Slide 5):
Below we recall some general terminology (see AI course):
State Space: is the set of all possible states that a system can be at.
State Graph: It is a directed graph showing all states and transitions (directed edges) between
states.
Search tree: is a tree traversal of the state graph.

Fig.	
 1:	
 CSP.	

Fig.	
 2:	
 OR	
 search	
 space.	

Fig.	
 3:	
 AND/OR	
 search.	

3	

	

We define the AND/OR search space based on that terminology.

AND/OR	
 Search	
 Space	
 (Slide	
 6):	

• 4-tuple (S,O,Sg,So)
• S: Set of states (OR states and AND states)
• O: Set of operators.

o The OR operator transforms an OR state into a disjunction of other states (in the
example of Fig. 3, X can be assigned 1, 2, or 3).

o The AND operator transforms an AND state to a conjunction of OR states (in the
example of Fig. 3, 〈X,1〉 transitions to the conjunction of Y and Z.

• Sg: The goal node, where the search stops with a solution
• So: The start node, which is node X from the diagram below

Terminal nodes: are those states without children and are labeled solved or unsolved.

AND/OR	
 Search	
 Tree	
 (Slide	
 7):	

Given a CSP & a DFS spanning tree T (corresponds to a static variable ordering) of its graph

• Nodes of T are either:
o OR nodes, which represent CSP variables, or
o AND nodes, which represent variable-value pairs (assignments to variables).

• Successor nodes in T
o of an OR node X, are all consistent value assignments 〈X,v〉
o of an AND node 〈X,v〉, are all children nodes of X in T.

• It helps to think of the combination of an OR node and its AND descendants as a ‘meta-
node’ and count as one node, i.e., OR nodes do not count in the depth of the tree. See fig.
4 below:

We all know how the OR tree in Fig. 2 is generated. Basically, we visit the variables sequentially
X, Y, T, then R, etc.

For the AND/OR tree in Fig. 3, start at the same root X (as an OR node) and the values that it
can be assigned (as the AND nodes) to make up a meta-node. Then, we can visit two variables Y
and Z in parallel. For that reason, each AND node is directly linked to two OR nodes (one for Y
and one for Z). Following in this manner, the AND nodes for the vvps of Y are linked to two
OR nodes (for each of T and R), while the AND nodes of the vvps of Z are linked to the OR
nodes to L and M.

Labeling	
 AND/OR	
 Search	
 Tree	
 Nodes	
 (Slide	
 9):	

• Label terminal OR nodes as UNSOLVED/0,
• Label terminal AND nodes as SOLVED/1,

Think	
 of	
 it	

like	
 this	
 box	
 Rather	
 than	
 these	

three	
 boxes	
 	

Fig.	
 4:	
 Meta-­‐node.	

4	

	

Fig.	
 5:	
 Labeled	
 tree	
 nodes.	

• Label internal OR nodes as 1 iff one of its successor nodes is 1, and
• Label internal AND as nodes 1 iff all of its successor nodes are 1.

Counting	
 Solutions	
 (Slide	
 10):	

Solutions are counted as follows, proceedings from the leaves of the tree to its root:
• A terminal AND node is labeled 1.
• A terminal OR node is labeled 0.
• An internal AND node is labeled the product of the labels of its children.
• An internal OR node is labeled the sum of the labels of its children.
• The final value of the label at the OR root-node is the total number of solutions.

Consider Fig. 5:

• All shown terminal nodes are labeled 1.
• OR-node T is labeled 2 because it is connected to two AND nodes (i.e., 〈T,1〉 and 〈T,3〉).
• 〈Y,2〉 is labeled 4 because the label of the OR-node T is 2 and that of R is 2 (i.e., 2*2=4).

Legal	
 Tree	
 of	
 a	
 Constraint	
 Graph	
 (Slide	
 12):	

• The legal tree is in fact the pseudo-tree (introduced by Freuder and Quinn in 1985).
• Given an undirected graph G = (V,E), a directed rooted tree T = (V,E’) defined on all its

nodes is legal if any edge in E that is not included in E’ is a back-arc (i.e., connects a
node to an ancestor).

o The edges in E’ can be from E or not.
o The edges of E can be in E’ or not.
o All the edges of E are either in E’ or are back-arcs in T.

• Many legal trees of a CSP exist. A DFS of a CSP is a legal tree. Any chain is a legal tree.
See examples in Fig. 6.

• Searching an OR tree corresponds to searching a chain legal-tree.

5	

	

Dynamic	
 Variable	
 Ordering	
 (Slide	
 13):	

	

	

• When X=0, the constraints are satisfied for any values of A,B, and C (0→x always holds
no matter what x is). So we can work on A, B and C in parallel.

• When X=1, we have to order C first, then A and B can be put in parallel.
• The paper did not test/empirically evaluate the use of dynamic variable ordering in the

AND/OR search space.

Minimal	
 AND/OR	
 Search	
 Spaces	
 (Slide	
 15):	

• The minimal AND/OR search-space can be generated by merging OR nodes in the

AND/OR tree (combining paths).
• Along two partial paths in the search-space over the same set of variables, if the search

subtrees rooted at these paths are identical, the subtrees can be merged together.

When	
 X=0,	
 no	
 active	

constraints	
 in	
 the	
 subproblem	

Fig.	
 6:	
 two	
 possible	
 resulting	
 legal	
 trees.	

Fig.	
 7:	
 Use	
 of	
 dynamic	
 variable	
 ordering.	

6	

	

• Fig. 8 shows an example of a merge of two identical subgraphs rooted at nodes Y.
• Merging paths always results in a unique minimal AND/OR search-graph regardless of

the order of application of the merger operator.

How	
 to	
 Merge	
 Nodes	
 (Slide	
 16):	

Merging subtrees can be done after generating all paths, which can be exponential in space.
Below, we explain how to avoid generating the entire tree.
Given T, a legal tree, we denote:

• G 𝒯: the extended graph of G relative to 𝒯, G 𝒯 = (V,E’∪E)
• G* 𝒯: the extended graph of G induced by marrying parents, relative to 𝒯.

Fig. 9: Legal tree.

Fig. 10: G 𝒯 Extended graph of
G relative to 𝒯.

Fig. 11: G*𝒯: Extended graph
of G induced by marrying
parents, relative to 𝒯.

Fig.	
 8:	
 Merging	
 identical	
 nodes.	

7	

	

For example, in Fig. 11, R and X are parent of Z and married with the addition of the
edge (R,X). Likewise, X and T are parent of R are married with the addition of the edge
(T,X).

• Parents(psx): {Ancestors of X that have connections in G*𝒯 to X or to descendants of X in
𝒯}. In Fig. 11, the parent of T psT = {X, Y} because X and Y are parents of T and are
also the parents of R (descendant of T).

• Parent-Separator(psax): {X}∪{ancestors of X that have connections in G*𝒯 to descendants
of X}. In Fig. 11, the parent-separator of T psaT = {X, Y, T} because Y and T are parents
of R (descendant of T).

• Nodes can be merged if two paths in the AND/OR graph have the same values as the
parent-separator.

Example	
 of	
 Merging	
 Nodes	
 (Slide	
 17-­‐19):	

• In Fig. 12, there are two paths of assignment, S1 (blue path) and S2 (red path) ending at

〈X,v〉 (AND node with the value v assigned to some variable X). The matching of the
ending assignment is important because it determines the possibility of a merge.

• For every state Si, S[psai] is called the context of Si when psai is the parent-separators set
of Xi relative to the legal tree T. In Fig. 13, S1 and S2 are contexts.

• It is possible to merge the similar nodes of two paths when: S1[psax]= S2[psax]

• In Fig. 13, S1 and S2 are two conditioned sub-problems (the sub-problem is conditioned
on the assignment of S1 and S2) that need to be checked for the possibility of a merge.

• The required outcome is the knowledge of what conditions influence the appearance of
the sub-trees. These conditions are parent-separators that affect the variables in the sub-
problem.

X

1 2 3

Y

2 3

T

R

31

31

T

21

…

R

31

R

31

R

31

Y

2 3

T

R

31

31

T

21

R

31

R

31

R

31

Fig.	
 12:	
 two	
 partial	
 paths.	

8	

	

Fig.	
 13:	
 Two	
 conditioned	
 sub-­‐problems.	

S1 S2

Size	
 of	
 AND/OR	
 (Slide	
 20):	

Notations:

o n: number of variables
o k: domain size
o w: induced width of G 𝒯
o m: depth of legal tree(m ≤ wlog(n))

• The space requirement of an AND/OR tree: O(nkwlog(n)).
• In the minimal AND/OR graph, the depth of the tree is bounded by the induced width:

O(nkw).

Solution	
 Counting	
 Algorithm	
 (Slide	
 22):	

The solution counting algorithm is in the original paper and in Robert’s slides (slide 22). The
algorithm builds the AND/OR tree iteratively and makes use of the structures below:

• OPEN: stores the unexplored nodes.
• CLOSE: stores the already explored nodes.
• G(n): structure used to build values (stores label of node).
• C(V): stores the context of a node.

Sub-­‐problem	

9	

	

Consider the diagram in Fig. 14:

1. Take the root-node of the tree and put it in OPEN.
2. Move the first node from OPEN to CLOSE.
3. Check whether that node is an AND node or an OR node. If the node has no

successors/children, then end, otherwise expand it.
o If the node has children, put them in OPEN.

4. Propagate: Run the propagation function (which counts the number of solutions rooted at
a node) on a node only when all of its children have been evaluated. If it is an OR node,
do the summation of the values of its children, else if it is an AND node, do the product
of the values of its children. Then go back to the second step and repeat until OPEN is
empty or all of its nodes are terminal nodes.

Empirical	
 Evaluations	
 (Slide	
 23):	

The performances of the following algorithms were compared: AND/OR-spaces, OR-spaces, and
bucket-elimination (with FC and with relational FC). The OR-search uses the same methods as
the AND/OR-search, including merging. The only difference between them is that the AND/OR-
search uses the DFS-tree, while the OR-search uses a chain for search.

Tests were performed on randomly generated CSPs with ternary constraints for different values
of tightness and the same number of constraints. Forward checking filters values only if a
variable has a constraint with just one future variable. Relational FC filters values even when a
variable has constraints with more than one future variable.

• AND/OR-search outperformed OR-search, in terms of time.
• In BE, CPU time was the same for all values of constraint tightness because it takes the

same amount of time to join the relations with the same scope but different tightness.

Fig.	
 14:	
 AND/OR	
 tree	
 with	
 labels	
 open	
 and	
 closed.	

10	

	

Fig.	
 15:	
 An	
 example	
 of	
 an	
 influence	
 diagram.	

• For all algorithms, as the looseness (incorrectly called tightness in the paper) increases,
the number of solutions also increases.

• In the presence of a clique-based tree, the AND/OR-search and the OR-search have the
same performance, because they will both produce a chain-based clique.

Use	
 of	
 Caching	
 (Slide	
 25)	

Caching refers to the record of no-goods. If the current node is an OR node that has no consistent
successors, it is identified as a dead-end and a no-good is recorded, resulting in a new constraint.
The set of constraints are modified to include this new constraint.

• Caching is not used in BE because it required too much space.
• Caching in AND/OR-search required very little time.
• Time requirement for caching in OR-search increased exponentially, with increase in

tightness.
• The same results occurred for the number of nodes visited and the number of dead ends.

Extra	
 Material	
 (Slide	
 29):	

• Influence diagrams: They are a generalization of the Bayesian network.
• Chance and decision are the two types of nodes the influence diagram can have. There is

no decision-node in a Bayesian network.

• Fig. 15 illustrates an influence-diagram example, where the goal is to make a smart
decision about drilling for oil in a land area.

