
Scribe Notes: 2/25/13
Presenter: Dr. Berthe Choueiry
Scribe: Daniel Geschwender

Tree Decomposition Methods – Rina’s slides for chapter 9
The class period was spent going over Rina’s slides for Chapter 9. The middle portion of the slides was

covered starting at “Recognizing acyclic networks” and ending after the “Distributed Arc-Consistency”

example.

Recognizing acyclic networks
By removing redundant edges in the dual graph, a tree can be formed. If it satisfies the connectedness

property, the problem is acyclic and thus tractable. This tree is a join tree. Redundant edges cannot be

removed using any technique because cycles may be left. There are two methods of identifying an

acyclic network: dual-based and primal-based

1. Dual-based method

 We replace the labelings of the

edges of the dual graph by the

number of variables in the labeling.

 We compute a maximal spanning

tree based on the weights of the

edges

 If the connectedness property holds,

then the tree is a join tree.

2. Primal-based method

 According to a theorem in (Maier 83), a network is acyclic if and only if its primal graph

is chordal and conformal.

 We apply MaxCardinality ordering and moralize the graph to make it chordal. If it is

not, then the network is not acyclic.

 If every maximal clique corresponds to the scope of some constraint in the original

hypergraph, then the primal graph is conformal.

 The above guarantees the existence of a join tree, and a join tree can be built as shown

below.

Primal-based recognition
 First check for chordality

 Test for conformality

 If a join tree exists, it must now be found

 Connect every clique such that it shares the maximum

number of variables with another clique

 See figures for illustration

 Any node can be the root of the tree. By default,

choose a balanced tree.

Tree-based clustering
Tree-based clustering builds a tree embedding of an arbitrary

constraint network, making look like as it is acyclic even when it

is not initially.

 It groups constraints together to form clusters until the problem is acyclic

 We must ensure that every constraint is still represented or the problem will become relaxed

 This technique is the basis for the join-tree clustering algorithm

Join-tree clustering
 The algorithm takes as input a constraint

problem and its primal graph

 The algorithm outputs an equivalent

acyclic problem and its join tree

 Steps:

1. Pick an ordering

2. Moralize

3. Find maximal cliques, connect

cliques in a tree

4. Place original constraints into the generated cliques

5. Solve subproblems and generate set of solutions

6. Return the join tree and the new constraints

Unifying Tree Decompositions
 Tree decompositions are studied in graph theory, theoretical computer science, databases as

well as in CSPs. They are currently a hot topic.

 The nodes of a tree decomposition are clusters of variables and constraints.

 The variables common to two adjacent clusters form a separator.

 Any such clustering is a tree decomposition provided it satisfies the following two conditions:

1. Each constraint in a problem must appear in at least one cluster that also has all the

variables in the constraint’s scope (otherwise, the problem is relaxed). Additional use of

constraints is allowed and can serve to further tighten subproblems

2. The tree has the connectedness property, which requires that every two occurrences of

a variable are connected by a path where the variable appears in the cluster.

 Many techniques for generating tree decompositions exist: tree-clustering and bucket

elimination are just two techniques.

 Question (Tony): Will it necessarily be a path connecting the occurrence of a given variable?

Answer: The graph induced by a given variable must be a connected tree, which means a path

between any two occurrences of a given variable

Cluster-Tree Elimination
 Uses message passing between clusters

 Makes two clusters agree on variables that are in their separator

 Each node sends a message to each of its neighbors

 The process is ‘amorphous’ and does not rely on any specific hierarchical structure or

directionality, only that the condition for passing a message is satisfied

 A message may only be passed from cluster A to cluster B if A has received messages from all its

neighbors besides B; A may or may not have received a message from B yet.

 Observation (Robert): the condition forces the leaves to initiate the message passing

Constraint Propagation
 To produce a message, all relations of a cluster are joined and then projected over the separator

 () ()

Distributed relational arc-consistency example
 Uses message passing similar to cluster tree elimination but is not performed on a tree.

 Each cluster is a single relation, each separator is of size one (arc consistency)

 Message passing occurs between clusters simultaneously: each relation receives messages from

all its neighbors, computes the join, and sends a message to each of its neighbors.

 Message passing continues until quiescence

