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1 The Simple Temporal Problem (STP)

We discussed algorithms to determine the consistency of an STP (see Ta-
ble 1). Those algorithms basically enforce Path Consistency. Given that the
constraints are convex, then they also they compute the minimal network
in most cases.

Table 1: Algorithms for computing consistency (and minimality and decompos-
ability) of the STP. For the complete table, see lecture slides. * can compute
minimality, but must be applied back and forth.

’ Algorithm Consistency ‘ Minimality
Floyd-Warshall yes yes
(Incremental) Bellman-Ford yes no
DPC yes no*
ASTP yes yes
PPC yes yes




When solving the STP, we are more concerned with the relations between
variables than with the variables’ domains. Because once we have ensured
decomposability, we can generate any solution for any value of any variable
in a backtrack-free manner.

2 Directional Path Consistency (DPC)

The algorithm for Directional Path Consistency (Algorithm 1) can be ap-
plied to the STP:

Algorithm 1: DPC (from Dechter page 355).
Data: A STP, S, and a variable ordering d = (x1,x2, ..., Tp)
Result: The directionally path-consistent network along d

for r :=n downto 1 by —1 do
for alli,j < k such that (i,k), (j,k) € E do
Tij < Tij © T ® Tk
Ee EU,))
if T;; = 0 then
| exit(network is inconsistent)

e The variables must follow some ordering, given as input, considered to
be the variables’ instantiation order. The ordering is implicitly /indirectly
moralized.

e Vertices are traversed in reverse order (bottom up). At depth k, we
revise the constraint, when it exists, between every two vertices i, j < k
given the constraints between (i,k) and (j, k).

e DPC determines consistency of the STP when we sweep the ordering
bottom up (one direction). Once DPC gets to the top, and there are
no empty intersections, then the network is consistent.

e If a constraint doesn’t exist, then it is the universal constraint (—oo, 00)
and must be added if its between the parents of some variable. Re-
member that any interval intersected with the universal constraint is
just the interval itself.

e On second pass DPC is run from the top down to filtering the rest,
and ensuring minimality and decomposability in the case of the STP.
Planken et al. provide the proof [4].! Two passes with DPC guarantees

'Response to question from Tony.



minimality only for temporal problems.?

3 Relating Consistency to Structure

Reminders from CSCE421/821:

e Given an ordering of the variables of a graph, the width of a vertex in
the ordering is the number of its parents.

e The width of the ordering is the maximum widths of the vertices in
the ordering.

e The width of the graph, w, is the minimum width of all its orderings.
The minimal width can be found in quadratic time (see CSE421/821).

e The induced width of an ordering is the width of the moralized graph.

e The induced width of the graph, w*, is the minimum induced width of
all its orderings. Computing the induced width of a graph is NP-hard.

When the network is triangulated, w = w*. (Guess why?)

Now, an important result by Freuder [3] links the level of consistency of
a CSP to its width as a sufficient condition for a backtrack-free search: A
CSP can be solved in a backtrack-free manner if its level of consistency is
equal to w4 1. As an example, consider a tree-structured CSP and apply
DAC on it from the leaves up, any path in the resulting tree from the root
to a leaf yields a solution in a backtrack-free manner (by simply applying
backchecking).

However, the same does not necessarily hold for a path from the leaves
to the root, because any value for a domain lower on the tree may not have
a support higher in the tree. To fix this issue and guarantee minimality,
we apply DAC again, this time from the root to the leaves. The above
illustrates we have to sweep in both direction and is the basis for tree-
structured methods for solving CSPs (Chapter 9 of [2]):

e Consider a tree embedding of the constraint network, where the largest
cluster has k variables, then the maximum number of parents any node
can have is k.

e Induced width determines level of consistency required for minimality:
W* 4+ 1 = consistency level

2Response to question from Robert.
3In practice, k-consistency is not useful because enforcing it may change the structure
of a graph, thus increasing its (induced) width.



e The result about tree decomposition is very important and exploited
in many areas in Computer Science (Bayesian Networks, Databases,
etc.). More generally, we talk about reasoning in graphical models.
Within graphical models the concept of width is also important, as
width bounds many things (e.g., the cost of reasoning, of answering
queries).

4 ASTP

ASTP is another method of solving the STP [5]:
e Like DPC but does not generate all edges as DPC does, just those
edges required to triangulate the graph.

e In ASTP each triangle is like a ternary constraint. When a change is
made we just update the neighboring triangles.

e Effort is bound by size of largest connected component, instead of by
triangles?.

e Also, any update remains local within the biconnected component.’

Definition 1 Articulation point/node and bi-connected component An ar-
ticulation point is vertex that, when removed from the graph, the graph be-
comes disconnected into two or more biconnected components.

5 Incremental Bellman-Ford

Incremental Bellman-Ford is another algorithm for determining the consis-
tency of an STP. It was proposed for temporal in space mission applications
[1]. It is extension of the Bellman-Ford (single source shortest path) algo-
rithm in order to handle incrementality.
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