**Scribe Notes:** 3/25/13 & 3/27/13

**Presenter:** Nate Stender **Scribe:** Daniel Geschwender

### **Constraint Optimization: Constraint Processing chapter 13**

During these two class periods, Nate discussed the content of Chapter 13 of Dechter's textbook on Constraint Optimization. During, the first period, we covered COPs, the combinatorial auction example, branch-and-bound search, Russian-dolls search, and bucket elimination. During the second period, we covered mini-bucket elimination and its application to branch-and-bound search.

#### **Motivation**

- Real life situations cannot always be modeled with hard constraints. Sometimes we need to model degrees of flexibility. Thus, we need to distinguish: Restrictions vs. Preferences.
- Hard constraints must be satisfied, soft constraints should be optimized
- Soft constraints are applicable to planning, scheduling, and design

## **Motivating Example: Combinatorial Auction**

- Bids are placed on groups of items
- No item may be bought twice
- The goal is to select non-overlapping bids that will maximize profit



**Figure 1: Combinatorial Auction** 

- Mutual exclusion constraints are placed between bids sharing an item
- Soft constraints are unary, representing the cost if a bid is selected
- The optimal solution is to take {b<sub>2</sub>,b<sub>3</sub>} resulting in a profit of 11

# **Constraint Optimization Problem (COP)**

• A COP consists of a constraint network and a set of cost functions

- Cost function is real valued
- Each functions' scope is a subset of the variables
- A cost function from the combinatorial auction example:

$$F_1(b_1) = \begin{cases} r_1 = 8 \ if \ b_1 = 1 \\ 0 \ if \ b_1 = 0 \end{cases}$$

- Cost functions in the example are unary and Boolean valued. However, in general a cost function may have any arity (i.e., may map any number of tuples). Figure 2 shows an example of a binary cost function F(a,b).
- A cost network is defined by a 4-tuple: (X,D,C<sub>H</sub>,C<sub>S</sub>)
  - X is the set of variables
  - o D is the set of domains
  - O C<sub>H</sub> is the set of the hard constraints
  - o C<sub>s</sub> is the set of the soft constraints

| а | b | cost |
|---|---|------|
| 0 | 0 | 3    |
| 0 | 1 | 4    |
| 1 | 0 | 5    |
| 1 | 1 | 6    |

Figure 2: Cost function

## Solving a COP as a series of CSPs

- Any COP can be converted into CSPs and solved using standard CSP techniques
- Add a hard constraint to account for the cost of the soft constraints:

$$\sum\nolimits_{j=1}^{l}F_{j}\geq C^{i}$$

- This constraint has a cost bound value, C
- · Solve the CSP multiple times, each time increasing the cost bound
- This operation will weed out non-optimal solutions, until only the optimal solution remains
- This technique is expensive because it executes multiple searches

#### **Branch and Bound search**

- Branch and bound is a technique that can be added to a backtrack search for solving an optimization problem
- It improves a backtrack search by keeping track of bounds on the optimal solution
  - Lower bound is the cost of the best solution found so far
  - Upper bound is determined from a bounding evaluation function.
- The bounding evaluation function will never underestimate the optimal cost<sup>1</sup>
- At each node of the search tree, use the bounding evaluation function to determine upper bounds for each of the child nodes



Figure 3: Branch and Bound search

You may remember A\* search from the AI course. It combines the cost of the partial solution, g(n), with an evaluation function, h(n), to compute an estimate of the current path, f(n), where f(n)=g(n)+h(n). The tighter the estimate, the smaller the explored search space.

- If the calculated upper bound is less than our lower bound, ignore that path
- Take the path with highest estimated upper bound
- When a complete assignment is found, raise the lower bound to the cost of that assignment
- The search tree generated for the bidding example is shown in Figure 3.
- Branch and bound is beneficial because branches of the search tree can be passed over if the upper bound is less than our lower bound
- Example heuristic for bounding evaluation function:
  - Assume the maximum value for all undetermined cost functions
  - The actual cost couldn't possibly exceed that, but may equal or fall short of that value

#### **Russian-Dolls Search**

- This search strategy involves running multiple branch-and-bound searches on increasingly larger problems
  - o Begin with the problem consisting of only the last variable and find its optimal solution
  - o Each new search adds in another variable, going from the end to the beginning
  - There will be n searches performed, where n is the number of variables in the full problem
- Each search provides an optimal solution for the partial problem, which sets upper bounds for the following searches
- This strategy results in many more searches, but provides a better heuristic, which generally results in more pruning.
- Figure 4 below illustrates the search tree generated by this strategy using the optimal solutions to the small problems ( $\{b_5\},\{b_5,b_4\},...$ ). Compare the search tree generated by this search and that in Figure 3.



Figure 4: Russian-Doll Search

# **Improving Branch and Bound**

 The branch and bound technique is used often in Operations Research in conjunction with simplex for solving integer programming problems. The integer programming problem is relaxed into a linear programming problem, which is solved by a simplex. The solution of the relaxed problem is then used in a bound and bound search to solve the integer programming problem.

- Best way to improve branch and bound is to improve the bounding function
- A tighter heuristic for the bounding function will result in additional pruning of the search tree
- Bucket elimination can be used with branch and bound

## **Bucket Elimination for Optimization**

- Bucket elimination is an inference algorithm used to solve COPs
- The process is similar to standard bucket elimination but the operations performed on the bucket functions are different.  $\pi_{x_i} \bowtie R_{ij}$
- Join replaced by summation, projection replace by max (or min)
- The buckets hold cost functions



Question (Fikayo): Why would the min operator be used?

Figure 5: Operation swap

**Answer:** Some problems are modeled as minimization problems, thus the min operator is used. Others are optimization problems and the max operator is used.

- Processing the buckets forward will give the maximum (minimum) cost value
- Going backwards through the buckets will give you the optimum assignment

#### **Derivation of Bucket Elimination**

• The assignments we want will maximize the sum of the cost functions

$$M = \max_{a,c,b,f,d,g} F_0(a) + F_1(a,b) + F_2(a,c) + F_3(b,c,f) + F_4(a,b,d) + F_5(f,g)$$

 The max f unction can be spread out across the function so it is applied only to relevant functions (i.e., the ones that depend on the argument being maximized)

$$M = \max_{a} F_0(a) + \max_{c} F_2(a,c) + \max_{b} F_1(a,b) + \max_{f} F_3(b,c,f) + \max_{d} F_4(a,b,d) + \max_{g} F_5(f,g)$$

- This splitting of the max into separate segments reflects how the buckets are formed
- By generating a function in each bucket, the formula can be further compressed by moving the function to the new lowest bucket
- This derivation of bucket elimination assumes all soft constraints

First solve hard constraints

• To add in hard constraints:



Figure 6: Buckets

- Prune tuples from the functions that are eliminated by hard constraints
- Solve for the soft constraints with the remaining tuples

#### **Mini-bucket Elimination**

- Bucket elimination can be expensive in terms of space: exponential in separator size
- The mini-bucket elimination technique is used to reduce the space requirement while it provides an approximate solution to the problem
- Partitions buckets into smaller buckets
- The resulting functions are of lower arity so they take up less space
- However, this operation results in an approximation of the optimal solution
- Functions in the mini-buckets cannot share variables

Question (Robert): What would happen if a variable was used in multiple functions?

**Answer:** In the case of hard constraints, you will lose filtering and allow through more solutions. In the case of soft constraints, you will get answers further away from the optimal.

- The mini-bucket elimination will result in an upper bound to the optimal solution
- Smaller mini-buckets are cheaper but less accurate; larger are more costly but closer to optimal
- How your partitions are chosen will affect your results, so a good heuristic is needed
- When processing the buckets in the forward direction, hard constraints may be included in some mini-buckets and left out of others resulting in additional approximation
- The forward direction gives an upper bound

Question (Fikayo): If there are several hard constraints in bucket how do you choose which to ignore?

**Answer:** They can be chosen in any way, but how they are chosen will affect the results. Thus, good heuristics are important.

Question (Robert): Why can't all the hard constraints be ignored?

**Answer:** If no hard constraints were taken into account, all costs would be added. The solution would be an upper bound but a very loose one.

- When going in the backward direction, all hard constraints and generated functions are considered
- The backward direction gives a lower bound

Question (DanielG): Does the mini-bucket algorithm offer any guarantee about it bounds?

**Answer:** No, the algorithm itself does not. The quality of the bounds is entirely dependent on the way the mini-buckets are selected.

Partitioning the buckets is analogous to moving the max operator within the summation

$$\max(Z(x) + Y(x)) \le \max(Z(x)) + \max(Y(x))$$

# Using Mini-Buckets as a heuristic

- Mini-bucket on its own will not provide an optimal solution
- Its bounds can still be useful in a branch and bound search
- The upper bounds generated by mini-bucket will never underestimate the optimal cost
- The bound estimation is monotonic: it will never become less accurate as the search continues
- In the case of the combinatorial auction problem the first choice heuristic performed similarly to mini-bucket
- They may result in different paths
- Mini-bucket provides tighter bounds



Figure 7: Search tree comparison