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1 Questions

Q: Daniel D.: Is bucket elimination implemented on top of some simpler algorithm?

A: Bucket elimination is its own technique and has no relation to search unless you are
using search on each bucked to compute the join. It is instead a form of constraint
compilation.

Q: Robert: This strategy is not typically used on interval domains?

A: (Revised answer.) Interval domains would be represented by unary constraints on dis-
crete or continuous domains. If we are talking about constraints of linear equalities,
then the technique corresponds to Guassian elimination. If the constraints are arbi-
trary, and the interval are continuous, computing the join of the constraints in the
bucket may be too difficult. Indeed, AC on continuous domains is relaxed into bound
consistency. Path consistency is O(n5), see PhD thesis of Djamila Sam Haroud at
EPFL in 1995.

2 Graphical Representation of CSPs: a Review

The constraint network is a graphical representation of a CSP.

• For a binary CSP, this network is a constraint graph.

• For a nonbinary CSP, this network is a hyper-graph (see Figure 1).

Other graphical representations are:

• For binary CSPs: the microstructure, the macrostructure, and the co-microstructure.

• For non-binary CSPs: the primal graph, the dual graph (or the join-graph).

Note that the primal graph of a binary CSP is the constraint graph itself.
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Figure 1: Two alternative graphical representations of a hypergraph.

3 Tree-Based Methods

When the constraint network (graph or hypergraph) is a tree, the CSP is easy to solve [3].
The problem is tractable. We can solve it directly in a backtrack-free manner as in the
following general manner:

1. Propagate constraints directionally, up, from the leaves to the root, then,

2. Instantiate top down, from the root to the leaves, building a solution in a backtrack-
free manner.

If a CSP does not have a tree structure, then we find some way to make it look like
one. There are many ways to obtain a tree-structure or tree-like structure of a constraint
network. In this lecture, we discussed a number of such techniques: cycle-cutset, dynamic
dangle identification, bi-connected components, and tree clustering, bucket elimination, and
tree decomposition (which defines a tree-embedding of the constraint network). The outline
slide lists references with the name of the author and for further reading.

3.1 Cycle-cutset

Because trees are easy to solve, we prefer working with them. However, not every graph is
a tree. One method of simulating a tree is to remove those vertices that cause cycles.

Definition 1 Cycle cutset is a subset of a graph’s vertices whose removal from the graph
leave a tree. The cutset itself is not a tree in general.

The main steps of this technique are:

1. Identify a cutset and partition the graph in two parts: a tree and the cycle cutest (see
Figure 2).

2. Find a solution for the cycle cutset (by backtrack search or by local search).

3. Revise tree against the solution of the cycle cutset (directional arc-consistency).

4. Try to solve the tree (directional arc consistency).

5. If no solution is found, then the problem lies with the instantiation for the cycle cutset.

6. Get another solution for the cutset and try again from step one.
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3,4 is still a cycle-cutset, maybe us

Figure 2: (A) The original graph, (B) graph with cutset (shaded region) removed, leaving behind
a tree. The cutset may be, but is in general not, a tree.

The complexity is reduced from O(dn) to O(ndc+2), where c is the size of the cycle cutset,
so the bottleneck is the size of the cycle cutset. However, finding the smallest cycle cutset
is NP-hard.

Q Robert: Can the cycle-cutset tree be a forest?

A Yes. We apply directional filtering on the nodes of the tree/forest when we have prospec-
tive solution to the cutset. Then we can solve each tree in the forest independently.

Q: Nate asked: Could we solve the tree since c is harder?

A: Yes, you could do DAC on the tree and test whether the problem can be discarded
already because the tree does not have a solution (although, this may be unlikely to
be the case). You could also start by enforcing AC (or any kind of pre-processing)
on the cutset before you check the tree. There could also be other special properties
that you may want to exploit. However, the point here is to show how the technique
works in general. Then, you can go ahead and do any kind of refinement you wish.

Q: Tony asked: Are there heuristics for the finding the cycle cutset?

A: Rina must use one [2]. I do not remember what it is exactly, we must check her paper and
textbook. Incidentally, Joel Gompert did an MS degree with me on a decomposition
technique that is dual to the cycle cutset. He looks for (and exploits) the largest
independant set (which is the complement in the graph of the minimal cycle cutset)
[5, 6, 4].

Supplemental answer: Rina offers a clever solution that does not neccesarily ‘look’ for
a cycle cutset, but takes advantage of one when it is encountered. From Dechter, pp.
275, “Because backtracking works by progressively instantiating sets of variables, we
only need to keep track of the connectivity status of the constraint graph. As soon
as the set of instantiated variables constitutes a cycle-cutset, the search algorithm is
switched to the tree-solving algorithm on the restricted problem...” While this itself
does not propose a heuristic, it builds up to the following on the same page “Some
simple heuristic ordering of the variables that aims at finding a small cycle-cutset
could be very beneficial here. One is to order the variables in decreasing order of their
degree in the constraint graph.”
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3.2 Dynamic Dangle Identification

Based on Graham’s graph reduction operation, which consists in iteratively removing from
a graph a vertex of degree one and was first proposed to identify acyclic networks [10]. The
strategy here is to identify a vertex of degree one, do DAC on its neighbor (i.e., revise the
neighbor given the node), and remove it because it has no further effect on the network.

• Every vertex with degree 1 is a dangle.

• Revise its neighbor given the variable, and remove it (see Figure 3.)

dangle vertex

Figure 3: A dangle is a variable of degree one and can be eliminated once its neighbor has been
made consistent with it.

• When a variable is instantiated during search, we do some kind of lookahead, then we
remove the edges between the variable and its neighbors, reducing the degree of the
variables, so we look again for dangles.

Q: Robert: Can we estimate what instantiation would create the most dangles?

A: (Revised answer) Yes, it is a good idea and would correspond to the degree ordering (see
note in “Supplemental answer” above). Yaling Zheng had tested several orderings,
wrote a paper, but it was never published. She tried several orderings.

3.3 Bi-Connected Components

Definition 2 Bi-connected component If a simple graph has a vertex whose removal
results in separating the graph into two or more independent graphs, then the induced sub-
graphs are called bi-connected components and their separator is called a cut-vertex or
articulation point.

We can overlay a tree-like structure atop a CSP by organizing it into independent
subgraphs without explicitly altering the graph. To do this we identify portions of the graph
separable by a single vertex, more formally we find the graph’s bi-connected components
(see Figure 4). The complexity of solving the CSP is O(dk), where k is the size of the largest
biconnected component [3].
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Figure 4: (A) A graph with identified bi-connected components, (B) Tree structure organization of
bi-connected components.

3.4 Tree Clustering

For a non-binary CSP tree-clustering operates on the primal graph. The basic process
follows these steps:

1. Apply MinFill to the primal graph to triangulate it.

2. Find maximal cliques of the primal graph...

3. and make a tree structure over them.

4. Find all the solutions of every clique, then

5. Do DAC on the solutions so that you can build a BT-free solution.

Complexity of tree clustering is O(ndk), where d is the domain size, k is the size of the
largest max clique.

3.5 Bucket Elimination

Bucket elimination propagates constraints up through the network in a way similar to how
tree clustering projects across the separator [1].

1. Choose a variable ordering.

2. Create a bucket for each variable.

3. Place each constraint in a bucket: the deepest one of any of its variables.

4. Starting from the bottom of the ordering, join the relations in the bucket, project out
the bucket’s variable from the join, and place the projection in the deepest bucket of
any of its variables.
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5. From the top down, find solutions backtrack free.

3.6 Tree Decomposition

This method is the most abstract view of trees in the CSP formalism. Tree decomposition
defines a tree embedding of the constraint network of a CSP. Because it is so high level
there are many ways a tree-decomposition scheme may be realized.

Definition 3 Tree Decomposition Given a CSP P = 〈X,D,C〉, a tree T = 〈V,E〉 with
the two labeling functions χ and ψ is a tree embedding of P (see Figure 5):

• χ(v): Associates to each v ∈ V some subset of X.

• ψ(v): Associates ti each v ∈ V some subset of C.

ψχ

x1, x2, ... c5, c3, ...

Figure 5: χ and ψ associate to every tree vertex a subset of the variables and constraints, respec-
tively.

This embedding is a tree decomposition if the functions χ and ψ obey the following two
rules:

1. Every constraint appears with its full scope in some tree node.

2. Every appearance of a variable x ∈ X complies with the connectedness property, which
is illustrated in Figure 6.

The decomposition methods based on bi-connected components, tree clustering, and
bucket elimination are special cases of a tree decomposition. Other tree decomposition
techniques exist [9, 11, 7, 8].
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Figure 6: If a variable appears in two nodes of the tree, it must appear in every node
along the path between the two nodes, inducing a single subtree. Here (A) displays the
connectedness property while (B) does not.
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