Recitation 9

Created by Taylor Spangler, Adapted by Beau Christ

- (3 min max) Questions about last week's quiz?
- Questions about lecture / homework so far?
- Given the Poset: $(\{\{1\}, \{2\}, \{4\}, \{1,2\}, \{1,4\}, \{2,4\}, \{3,4\}, \{1,3,4\}, \{2,3,4\}\}, \subseteq)$
 - 1. Find the maximal elements: {1, 2}, {1, 3, 4}, {2, 3, 4} (because these are not subsets of any other sets in the relation right?)
 - 2. Find the minimal elements: {1}, {2}, {4} (again, there are no subsets of these sets in the relation)
 - 3. Is there a greatest element?: No
 - 4. Is there a least element?: No
 - 5. Find all of the upper bounds of $\{\{2\}, \{4\}\}$: $\{\{2, 4\}, \{2, 3, 4\}\}$
 - 6. Find the least upper bound of $\{\{2\}, \{4\}\}$: $\{2, 4\}$
 - 7. Find all lower bounds of $\{\{1, 3, 4\}, \{2, 3, 4\}: \{\{3, 4\}, \{4\}\}$
 - 8. Find the greatest lower bound of $\{\{1, 3, 4\}, \{2, 3, 4\}\}$: $\{3, 4\}$
- Induction: Example using triominoes for $2^n \times 2^n$ checkerboard missing one corner, see page 326.
- Now, problem 5.1.5, using induction prove: $1^2 + 3^2 + ... + (2n+1)^2 = \frac{(n+1)(2n+1)(2n+3)}{3}$ for nonnegative n.
 - 1. Here we can see the base case is 0 (we want n to be nonnegative and an integer, note not the same as positive), what is P(0)? $P(0) = 1 = \frac{(1)(1)(3)}{3}$
 - 2. Show that P(0) is true: $1 = 1 \cdot \frac{1 \cdot 1 \cdot 3}{3} = 1$. Therefore P(0) is true.
 - 3. What is the inductive hypothesis? P(k) is true, that is $1^2 + 3^2 + ... + (2k+1)^2 = \frac{(k+1)(2k+1)(2k+3)}{2}$.
 - 4. We want to prove: P(k+1) that is $1^2 + 3^2 + ... + (2k+3)^2 = \frac{(k+2)(2k+3)(2k+5)}{3}$

- 5. So we have that P(k) is true, P(k+1) is really just $1^2 + 3^2 + ... + (2k+1)^2 + (2k+3)^2$. By our inductive hypothesis, we have that this is really $\frac{(k+1)(2k+1)(2k+3)}{3} + (2k+3)^2$. This equals $(2k+3) * (\frac{(k+1)(2k+1)+6k+9}{3}) = (2k+3) * (\frac{2k^2+9k+10}{3}) = \frac{(k+2)(2k+3)(2k+5)}{3}$...this is what we were trying to prove, therefore, by induction, $1^2 + 3^2 + ... + (2n+1)^2 = \frac{(n+1)(2n+1)(2n+3)}{3}$ for nonnegative n.
- Now, prove the following: $3 \mid 2^{2n} 1$ for $n \ge 1$.
 - 1. Base case is n = 1. So $P(1) = 3 \mid 2^{2(1)} 1$.
 - 2. Well clearly $2^{2(1)} 1 = 4 1 = 3$. And it is obvious that $3 \mid 3$, so the base case is proven.
 - 3. What is our inductive hypothesis? P(k) so $3 \mid 2^{2k} 1$.
 - 4. We want to prove that $3 \mid 2^{2k+2} 1$.
 - 5. Well, $P(k+1) = 3 \mid 2^{2k+2} 1$. We also can see $2^{2k+2} 1 = 4 * 2^k 1 = 4 * (2^k 1 + 1) 1$.
 - 6. But we know, by our inductive hypothesis that this equals 4 * (3t + 1) 1 = 12t + 4 1 = 12t + 3 = 3(4t + 1).
 - 7. Clearly this is divisible by 3, therefore $P(k+1) = 3 \mid 2^{2k+2} 1$ is true.