Recitation 10

Created by Taylor Spangler, Adapted by Beau Christ

- (3 min max) Questions about last week's quiz?
- Questions about lecture / homework so far?
- Now, problem 5.1.5, using induction prove: $1^2 + 3^2 + ... + (2n+1)^2 = \frac{(n+1)(2n+1)(2n+3)}{3}$ for nonnegative n.
 - 1. Here we can see the base case is 0 (we want n to be nonnegative and an integer, note not the same as positive), what is P(0)? $P(0) = 1 = \frac{(1)(1)(3)}{3}$
 - 2. Show that P(0) is true: $1 = 1 \cdot \frac{1 \cdot 1 \cdot 3}{3} = 1$. Therefore P(0) is true.
 - 3. What is the inductive hypothesis? P(k) is true, that is $1^2 + 3^2 + ... + (2k+1)^2 = \frac{(k+1)(2k+1)(2k+3)}{3}$.
 - 4. We want to prove: P(k+1) that is $1^2 + 3^2 + ... + (2k+3)^2 = \frac{(k+2)(2k+3)(2k+5)}{2}$
 - 5. So we have that P(k) is true, P(k+1) is really just $1^2 + 3^2 + ... + (2k+1)^2 + (2k+3)^2$. By our inductive hypothesis, we have that this is really $\frac{(k+1)(2k+1)(2k+3)}{3} + (2k+3)^2$. This equals $(2k+3) * (\frac{(k+1)(2k+1)+6k+9}{3}) = (2k+3) * (\frac{2k^2+9k+10}{3}) = \frac{(k+2)(2k+3)(2k+5)}{3}$...this is what we were trying to prove, therefore, by induction, $1^2 + 3^2 + ... + (2n+1)^2 = \frac{(n+1)(2n+1)(2n+3)}{3}$ for nonnegative n.
- Now, prove the following: $3 \mid 2^{2n} 1$ for $n \ge 1$.
 - 1. Base case is n = 1. So $P(1) = 3 \mid 2^{2(1)} 1$.
 - 2. Well clearly $2^{2(1)} 1 = 4 1 = 3$. And it is obvious that $3 \mid 3$, so the base case is proven.
 - 3. What is our inductive hypothesis? P(k) so $3 \mid 2^{2k} 1$.
 - 4. We want to prove that $3 \mid 2^{2k+2} 1$.
 - 5. Well, $P(k+1) = 3 \mid 2^{2k+2} 1$. We also can see $2^{2k+2} 1 = 4 * 2^k 1 = 4 * (2^k 1 + 1) 1$.
 - 6. But we know, by our inductive hypothesis that this equals 4 * (3t + 1) 1 = 12t + 4 1 = 12t + 3 = 3(4t + 1).
 - 7. Clearly this is divisible by 3, therefore $P(k+1) = 3 \mid 2^{2k+2} 1$ is true.

• A strong induction proof.

Show that if $n \in \mathbb{N}$ then $12 \mid (n^4 - n^2)$.

1. Base Case:

- (a) n = 1: $1^4 1^2 = 0 = 12 * 0$ so P(1) is true.
- (b) $n = 2: 2^4 2^2 = 16 4 = 12 = 12 * 1$ so P(2) is true.
- (c) $n = 3: 3^4 3^2 = 81 9 = 72 = 12 * 6$ so P(3) is true.
- (d) $n = 4: 4^4 4^2 = 256 16 = 240 = 12 * 20$ so P(4) is true.
- (e) $n = 5: 5^4 5^2 = 625 25 = 600 = 12 \times 50$ so P(5) is true.
- (f) $n = 6: 6^4 6^2 = 1296 36 = 1260 = 12 \times 105$ so P(6) is true
- 2. Strong Inductive Hypothesis Let $k \ge 6 \in \mathbb{N}$ and assume that $12 \mid (m^4 m^2)$ for $1 \le m \le k$ where $m \in \mathbb{N}$.
- 3. Let i = k 5, then we can assume P(i) holds. Clearly i + 6 = k + 1.
- 4. $(i+6)^4 (i+6)^2 = (i^4 + 24i^3 + 180i^2 + 864i + 1296) (i^2 + 12i + 36) = (i^4 i^2) + 24i^3 + 180i^2 + 852i + 1260$
- 5. Clearly $i^4 i^2 = 12 * t$.
- 6. We can also see that the remaining portion can be rewritten as $12(2i^3 + 15i^2 + 71i + 105)$.
- 7. Then we have that $(k+1)^4 (k+1)^2 = 12t + 12(2i^3 + 15i^2 + 71i + 105) = 12*(t+2i^3 + 15i^2 + 71i + 105)$
- 8. Then we have that $12 \mid (k+1)^4 (k+1)^2$.