Due: Friday, March 1, 2013	
Name 1(Print)	CSE Login
Name 2(Print)	CSE Login

Problem	Page	Notes	Points	Score
2.2:4	136		4	
2.2:14	136		5	
2.2:16 a,c,e	136		6	
(Bonus) 2.2:22	136	Give a formal proof	3	
(Bonus) 2.2:28	136		3	
2.3:2	152	Yes/No answers	3	
2.3:20	153		4	
2.3:22 a,c	153		2	
2.3:34	154		6	
2.3:40	154		8	
(Bonus)2.3:70	154		3	
(Bonus)2.3:76	154		2	
Problem A	n/a	See Below	9	
Problem B	n/a	See Next Page	16	
Problem C	n/a	See Next Page	8	
Typesetting (bo	nus)		7	
Total	<u> </u>		71	

Problem A (2.3:10)

Let $f: \{a, b, c, d\} \rightarrow \{a, b, c, d\}$, for each of function f defined below

1.
$$f(a) = b$$
, $f(b) = a$, $f(c) = c$, $f(d) = d$.

2.
$$f(a) = b$$
, $f(b) = b$, $f(c) = d$, $f(d) = c$.

3.
$$f(a) = d$$
, $f(b) = a$, $f(c) = c$, $f(d) = d$.

Determine whether each f is

- a one-to-one (injective)
- b onto (surjective)
- ${\bf c}$ one-to-one correspondence (bijective)

Problem B (2.3.12)

For <u>each</u> function $f: \mathbb{Z} \to \mathbb{Z}$

- $\bullet \ f(n) = n 1 \ .$
- $f(n) = n^2 + 1$.
- $f(n) = n^3$.
- $f(n) = \lceil \frac{n}{2} \rceil$.
- 1. Determine whether each f is one-to-one (injective).
- 2. Determine whether each f is onto (surjective).
- 3. Determine whether each f is one-to-one correspondence (bijective).
- 4. Determine whether each f is invertible. If so, give f^{-1} .

Problem C

For functions $f(x) = x^2 + x$ and g(x) = x - 2 from \mathbb{R} to \mathbb{R} , find:

- 1. $f \circ g$
- 2. $g \circ f$
- 3. $f \circ f$
- 4. $g \circ g$

Note: we have rng(f) = rng(g) = domain(f) = domain(g).

Instructions Follow instructions *carefully*, failure to do so may result in points being deducted.

- The homework can be submitted on paper or via handin. Homework *neatly* formatted in LaTeXwill receive a 10 percent bonus. You will not receive the bonus points if you work with a partner (see below).
- Clearly label each problem and submit answers in order.
- Staple this cover page to the front of your assignment for easier grading.
- Late submissions will not be accepted
- When you are asked to prove something, you must give a formal, rigorous, and complete a proof as possible. Each step in your proof must contain explanation that would allow us to understand what theorem/logic you have applied to arrive at that step.
- You are to work individually, and all work should be your own. Check partner policy below.
- The CSE academic dishonesty policy is in effect (see http://cse.unl.edu/ugrad/resources/academic_integrity.php).

Partner Policy You may work in pairs, but you must follow these guidelines:

- 1. You must work all problems together. You may not simply partition the work between you.
- 2. You must use LATEX and you may divide the typing duties however you wish.
- 3. You may not discuss the problems with other groups or individuals.
- 4. Hand in only one hard copy with both author's names.