Algorithms: An Introduction

‘Algorithm’ is a distortion of Al-Khawarizmi, a Persian mathematician

Section 3.1 of Rosen
Spring 2013
CSCE 235 Introduction to Discrete Structures
Course web-page: cse.unl.edu/~cse235
Questions: Piazza
Outline

• Introduction & definition
• Algorithms categories & types
• Pseudo-code
• Designing an algorithm
 – Example: MAX
• Greedy Algorithms
 – CHANGE
Computer Science is About Problem Solving

• A Problem is specified by

 1. **The givens** (a formulation)
 • A set of objects
 • Relations between them

 2. **The query**
 • The information one wants to extract from the formulation, the question to answer

<table>
<thead>
<tr>
<th>Real World</th>
<th>↔</th>
<th>Computing World</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objects</td>
<td>represented by...</td>
<td>data Structures, ADTs, Classes</td>
</tr>
<tr>
<td>Relations</td>
<td>implemented with...</td>
<td>relations & functions (e.g., predicates)</td>
</tr>
<tr>
<td>Actions</td>
<td>Implemented with...</td>
<td>algorithms: a sequence of instructions</td>
</tr>
</tbody>
</table>

• **An algorithm** is a method or procedure that solves instances of a problem
Algorithms: Formal Definition

• **Definition**: An algorithm is a sequence of unambiguous instructions for solving a problem.

• Properties of an algorithm
 – **Finite**: the algorithm must eventually terminate
 – **Complete**: Always give a solution when one exists
 – **Correct (sound)**: Always give a correct solution

• For an algorithm to be an acceptable solution to a problem, it must also be **effective**. That is, it must give a solution in a ‘reasonable’ amount of time

• Efficient= runs in polynomial time. Thus, **effective ≠ efficient**

• There can be many algorithms to solve the same problem
Outline

• Introduction & definition
• **Algorithms categories & types**
• Pseudo-code
• Designing an algorithm
 – Example: MAX
• Greedy Algorithms
 – CHANGE
Algorithms: General Techniques

• There are many broad categories of algorithms
 – Deterministic versus Randomized (e.g., Monte-Carlo)
 – Exact versus Approximation
 – Sequential/serial versus Parallel, etc.

• Some general styles of algorithms include
 – Brute force (enumerative techniques, exhaustive search)
 – Divide & Conquer
 – Transform & Conquer (reformulation)
 – Greedy Techniques
Outline

• Introduction & definition
• Algorithms categories & types
• **Pseudo-code**
• Designing an algorithm
 – Example: MAX
• Greedy Algorithms
 – CHANGE
Good Pseudo-Code: Example

INTERSECTION

Input: Two finite sets A, B

Output: A finite set C such that $C = A \cap B$

1. $C \leftarrow \emptyset$
2. If $|A| > |B|$ then \text{SWAP}(A,B)
3. End
4. For every $x \in A$ Do
5. If $x \in B$ then $C \leftarrow C \cup \{x\}$ Union($C,\{x\}$)
6. End
7. End
8. Return C
Algorithms: Pseudo-Code

• Algorithms are usually presented using pseudo-code
• Bad pseudo-code
 – gives too many details or
 – is too implementation specific (i.e., actual C++ or Java code or giving every step of a sub-process such as set union)
• Good pseudo-code
 – Is a balance between clarity and detail
 – Abstracts the algorithm
 – Makes good use of mathematical notation
 – Is easy to read and
 – Facilitates implementation (reproducible, does not hide away important information)
Writing Pseudo-Code: Advice

• Input/output must properly defined
• All your variables must be properly initialized, introduced
• Variables are instantiated, assigned using \leftarrow
• All `commands' (while, if, repeat, begin, end) bold face \bf

For $i \leftarrow 1$ to n Do

• All functions in small caps $\textsc{Union}(s,t)$
• All constants in courier: $\tt\pi \leftarrow 3.14$
• All variables in italic: $temperature \leftarrow 78$ (\it, \em)
• LaTeX: Several algorithm formatting packages exist on WWW
Outline

• Introduction & definition
• Algorithms categories & types
• Pseudo-code

• Designing an algorithm
 – Example: MAX

• Greedy Algorithms
 – CHANGE
Designing an Algorithm

• A general approach to designing algorithms is as follows
 – Understanding the problem, **assess its difficulty**
 – Choose an approach (e.g., exact/approximate, deterministic/probabilistic)
 – (Choose appropriate data structures)
 – Choose a strategy
 – Prove
 1. Termination
 2. Completeness
 3. Correctness/soundness
 – Evaluate complexity
 – Implement and test it
 – Compare to other known approach and algorithms
Algorithm Example: MAX

• When designing an algorithm, we usually give a formal statement about the problem to solve

• Problem
 – **Given**: a set $A=\{a_1,a_2,\ldots,a_n\}$ of integers
 – **Question**: find the index i of the maximum integer a_i

• A straightforward idea is
 – Simply store an initial maximum, say a_1
 – Compare the stored maximum to every other integer in A
 – Update the stored maximum if a new maximum is ever encountered
Pseudo-code of Max

Max

Input: A finite set $A=\{a_1, a_2, \ldots, a_n\}$ of integers

Output: The largest element in the set

1. $temp \leftarrow a_1$
2. For $i = 2$ to n Do
3. If $a_i > temp$
4. Then $temp \leftarrow a_i$
5. End
6. End
7. Return $temp$
Algorithms: Other Examples

- Check Bubble Sort and Insertion Sort in your textbooks
- ... which you should have seen ad nauseum in CSE 155 and CSE 156
- And which you will see again in CSE 310
- Let us know if you have any questions
Outline

• Introduction & definition
• Algorithms categories & types
• Pseudo-code
• Designing an algorithm
 – Example: MAX

• Greedy Algorithms
 – CHANGE
Greedy Algorithms

• In many problems, we wish to not only find a solution, but to find the best or optimal solution
• A simple technique that works for some optimization problems is called the greedy technique
• As the name suggests, we solve a problem by being greedy:
 – Choose what appears now to be the best choice
 – Choose the most immediate best solution (i.e., think locally)
• Greedy algorithms
 – Work well on some (simple) algorithms
 – Usually they are not guaranteed to produce the best globally optimal solution
Change-Making Problem

• We want to give change to a customer but we want to minimize the number of total coins we give them

• Problem
 – **Given**: An integer n and a set of coin denominations $(c_1, c_2, ..., c_r)$ with $c_1 > c_2 > ... > c_r$
 – **Query**: Find a set of coins $d_1, d_2, ..., d_k$ such that
 \[\sum_{i=1}^{k} d_i = n \] and k is minimized
Greedy Algorithm: CHANGE

CHANGE

Input: An integer \(n \) and a set of coin denominations \(\{c_1, c_2, \ldots, c_r\} \) with \(c_1 > c_2 > \ldots > c_r \)

Output: A set of coins \(d_1, d_2, \ldots, d_k \) such that \(\sum_{i=1}^{k} d_i = n \) and \(k \) is minimized

1. For \(i = 1 \) to \(r \) Do
2. \(d_i \leftarrow 0 \)
3. While \(n \geq c_i \) Do
4. \(d_i \leftarrow d_i + 1 \)
5. \(n \leftarrow n - c_i \)
6. End
7. Return \(\{d_i\} \)
CHANGE: Analysis (1)

- Will the algorithm always produce an optimal answer?
- Example
 - Consider a coinage system where \(c_1 = 20, c_2 = 15, c_3 = 7, c_4 = 1 \)
 - We want to give 22 ‘cents’ in change
- What is the output of the algorithm?
- Is it optimal?
- It is not optimal because it would give us two c4 and one c1 (3 coins). The optimal change is one c2 and one c3 (2 coins)
CHANGE: Analysis (2)

• What about the US currency system: is the algorithm correct in this case?
• Yes, in fact it is. We can prove it by contradiction.
• For simplicity, let us consider
 \[c_1=25, \ c_2=10, \ c_3=5, \ c_4=1 \]
Optimality of CHANGE (1)

• Let $C=\{d_1, d_2, \ldots, d_k\}$ be the solution given by the greedy algorithm for some integer n.

• By way of contradiction, assume there is a better solution $C'=\{d_1', d_2', \ldots, d_l'\}$ with $l<k$.

• Consider the case of quarters. Say there are q quarters in C and q' in C'.
 1. If $q' > q$, the greedy algorithm would have used q' by construction. Thus, it is impossible that the greedy uses $q < q'$.
 2. Since the greedy algorithms uses as many quarters as possible, $n = q(25) + r$, where $r < 25$. If $q' < q$, then, $n = q'(25) + r'$ where $r' \geq 25$. C' will have to use more smaller coins to make up for the large r'. Thus C' is not the optimal solution.
 3. If $q = q'$, then we continue the argument on the smaller denomination (e.g., dimes). Eventually, we reach a contradiction.

• Thus, $C = C'$ is our optimal solution.
Optimality of CHANGE (2)

• But, how about the previous counterexample? Why (and where) does this proof?
• We need the following lemma:

If n is a positive integer, then n cents in change using quarters, dimes, nickels, and pennies using the fewest coins possible
 – Has at most two dimes
 – Has at most one nickel
 – Has at most four pennies, and
 – Cannot have two dimes and a nickel

The amount of change in dimes, nickels, and pennies cannot exceed 24 cents
Greedy Algorithm: Another Example

- Check the problem of Scenario I, page 25 in the slides IntroductiontoCSE235.ppt
- We discussed then (remember?) a greedy algorithm for accommodating the maximum number of customers. The algorithm
 - terminates, is complete, sound, and satisfies the maximum number of customers (finds an optimal solution)
 - runs in time linear in the number of customers
Summary

• Introduction & definition
• Algorithms categories & types
• Pseudo-code
• Designing an algorithm
 – Example: MAX
• Greedy Algorithms
 – Example: CHANGE