Homework 7

Assigned on: Friday, March 30, 2012.
Due: Friday, April 6, 2012.

You can choose to do either Section 1 (worth 100 points) or Sections 2 to 9 (with 100 points plus 20 bonus points). It is your decision. If you choose to do both options, you will receive the maximum of the grades of the two sections, not the sum.

1 Implementation: Solving SAT

100 points
Write a search algorithm to determine the satisfiability of a SAT instance. You can either write:

- A DPLL procedure (backtrack search),
- A local search procedure.

You must

- Clearly describe, in addition to your code, your data structures, how your search algorithm operates, and the improvements, if any, that you have included in your code.
- We recommend that you use the standard file for input files known as the 'simplified version of the DIMACS format':
http://www.satcompetition.org/2009/format-benchmarks2009.html
- Test the performance of your algorithm on some non trivial uniform random instances taken from the SAT Competition. For example:
http://www.cs.ubc.ca/ ${ }^{\sim}$ hoos/SATLIB/benchm.html
Alert: many implementations exist in the literature and on the web. We expect you to do your own implementation.

2 AIMA, Exercise 7.1, page 279.

16 points

3 AIMA, Exercise 7.7, page 281.

6 points

4 Truth Tables

Use truth tables to show that each of the following is a tautology.

1. $(p \wedge q) \rightarrow \neg(\neg p \vee \neg q)$
2. $[$ Mary $\wedge($ Mary \rightarrow Susy $)] \rightarrow$ Susy
3. $\alpha \rightarrow[\beta \rightarrow(\alpha \wedge \beta)]$
4. $(a \rightarrow b) \rightarrow[(b \rightarrow c) \rightarrow(a \rightarrow c)]$

5 AIMA, Exercise 7.10, page 281.
16 points
Only b, c, d, e, f, and g.

6 Logical Equivalences

8 points
Using a method of your choice, verify:

1. $(\alpha \rightarrow \beta) \equiv(\neg \beta \rightarrow \neg \alpha)$ contraposition
2. $\neg(\alpha \wedge \beta) \equiv(\neg \alpha \vee \neg \beta)$ de Morgan
3. $(\alpha \wedge(\beta \vee \gamma)) \equiv((\alpha \wedge \gamma) \vee(\alpha \wedge \beta))$ distributivity of \wedge over \vee

7 AIMA, Exercise 7.22, page 284. bonus
 18 points +20

Parts a, b, and c are required. Parts d, e, and fare bonus.

8 Proofs

28 points
Give the explantions of each step if the steps are given, and give both the explanation and step if they are not.

- If $q \wedge(r \wedge p), t \rightarrow v, v \rightarrow \neg p$, then $\neg t \wedge r$.

Proof

1. $q \wedge(r \wedge p)$
2. $t \rightarrow v$
3. $v \rightarrow \neg p$
4. $t \rightarrow \neg p$
5. $(r \wedge p)$
6. r
7. p

Explanations
Given
Given
Given
8. $\neg \neg p$
9. $\neg t$
10. $\neg t \wedge r$

- If $p \rightarrow(q \wedge r), q \rightarrow s$, and $r \rightarrow t$, then $p \rightarrow(s \wedge t)$.

Proof

Explanations

1.
2.
3.
4.
5.
6.
7.

- Prove by contradiction.

If $\neg(\neg p \wedge q), p \rightarrow(\neg t \vee r), q$, and t, then r.

Proof

1. $\neg(\neg p \wedge q)$
2. $p \rightarrow(\neg t \vee r)$
3. q
4. t
5. $\neg r$
6.
7.
8.
9.
10.
11.
12.

Explanations

Given
Given
Given
Given
Negation of Conclusion

