Homework 7

Assigned on: Friday, March 30, 2012.

Due: Friday, April 6, 2012.

You can choose to do either Section 1 (worth 100 points) or Sections 2 to 9 (with 100 points plus 20 bonus points). It is your decision. If you choose to do both options, you will receive the *maximum* of the grades of the two sections, not the sum.

1 Implementation: Solving SAT 100 points

Write a search algorithm to determine the satisfiability of a SAT instance. You can either write:

- A DPLL procedure (backtrack search),
- A local search procedure.

You must

- Clearly describe, in addition to your code, your data structures, how your search algorithm operates, and the improvements, if any, that you have included in your code.
- We recommend that you use the standard file for input files known as the 'simplified version of the DIMACS format': http://www.satcompetition.org/2009/format-benchmarks2009.html
- Test the performance of your algorithm on some non trivial uniform random instances taken from the SAT Competition. For example: http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

Alert: many implementations exist in the literature and on the web. We expect you to do your own implementation.

2	AIMA, Exercise 7.1, page 279.	16 points
3	AIMA, Exercise 7.7, page 281.	6 points
4	Truth Tables	8 points

Use truth tables to show that each of the following is a tautology.

1. $(p \land q) \rightarrow \neg(\neg p \lor \neg q)$ 2. $[Mary \land (Mary \rightarrow Susy)] \rightarrow Susy$ 3. $\alpha \rightarrow [\beta \rightarrow (\alpha \land \beta)]$ 4. $(a \rightarrow b) \rightarrow [(b \rightarrow c) \rightarrow (a \rightarrow c)]$

5 AIMA, Exercise 7.10, page 281. 16 points

Only b, c, d, e, f, and g.

6 Logical Equivalences 8 points

Using a method of your choice, verify:

- 1. $(\alpha \rightarrow \beta) \equiv (\neg \beta \rightarrow \neg \alpha)$ contraposition
- 2. $\neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta)$ de Morgan
- 3. $(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \gamma) \lor (\alpha \land \beta))$ distributivity of \land over \lor

7 AIMA, Exercise 7.22, page 284. 18 points + 20 bonus

Parts a, b, and c are required. Parts d, e, and f are bonus.

8 Proofs

Give the explanations of each step if the steps are given, and give both the explanation and step if they are not.

28 points

• If $q \wedge (r \wedge p), t \to v, v \to \neg p$, then $\neg t \wedge r$. Proof	Explanations
1. $q \wedge (r \wedge p)$	Given
2. $t \rightarrow v$	Given
3. $v \rightarrow \neg p$	Given
4. $t \rightarrow \neg p$	
5. $(r \wedge p)$	
6. <i>r</i>	
7. <i>p</i>	

8. $\neg \neg p$ 9. $\neg t$ 10. $\neg t \wedge r$

• If $p \to (q \wedge r), q \to s$, and $r \to t$, then $p \to (s \wedge t)$.

 \mathbf{Proof}

1.

Explanations

Explanations

2.
3.
4.
5.
6.
7.

• Prove by contradiction.

If $\neg(\neg p \land q), p \rightarrow (\neg t \lor r), q$, and t, then r.

\mathbf{Proof}

11. 12.

1. $\neg(\neg p \land q)$	Given
2. $p \to (\neg t \lor r)$	Given
3. q	Given
4. <i>t</i>	Given
5. $\neg r$	Negation of Conclusion
6.	
7.	
8.	
9.	
10.	