Recitation 8

Taylor Spangler

March 5, 2012

- (3 min max) Questions about last week's quiz?
- Questions about lecture / homework so far?
- Today we're looking at Relations.

• First, a few definitions:

- 1. **Reflexive**: $(a, a) \in R$ for all $a \in A$
- 2. Symmetric: $\forall a, b \in A, (a, b) \in R \rightarrow (b, a) \in R$
- 3. Antisymmetric: $a, b \in A$, $(a, b) \in R$ and $(b, a) \in R$ then a = b
- 4. Transitive: $a, b, c \in A$, $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$
- 5. Irreflexive: $\forall a \in A, (a, a) \notin R$
- 6. Asymmetric: $(a, b) \in R$ then $(b, a) \notin R$
- 7. Equivalence Relation: A relation that is *reflexive*, *symmetric*, and *transitive*.
- First let's look at problem 9.1.3 a, determine whether the following relation is symmetric, antisymmetric, reflexive, and/or transitive, over {1,2,3,4}
 - 1. $R = \{(2,2), (2,3), (2,4), (3,2), (3,3), (3,4)\}$
 - 2. Is it reflexive? No, there is no (4,4) element
 - 3. Is it symmetric? No, there are no (4,2), or (4,3) elements
 - 4. Is it Antisymmetric? No, (2,3) and (3,2) are elements
 - 5. Is it Transitive? **Yes**
- How about 9.1.3 b: over $\{1,2,3,4\}$
 - 1. $S = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)\}$
 - 2. Is it reflexive? Yes
 - 3. Is it symmetric? Yes

- 4. Is it Antisymmetric? No, (2,1) and (1,2) are elements
- 5. Is it Transitive? Yes
- What is the relation $S \cup R$?

 $S \cup R = \{(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 4)\}$

- 1. Antisymmetric?: No, no (1,2) and (2,1)
- 2. Symmetric? No, no (4,2) element
- 3. Reflexive? Yes
- 4. Transitive? No (1,2) and (2,4), but no (1,4)
- What is the relation $S \cap R$?

$$S \cup R = \{(1,1), (2,2), (3,3), (4,4)\}$$

- 1. Antisymmetric? Yes
- 2. Symmetric? Yes
- 3. Reflexive? Yes
- 4. Transitive? Yes

_

• Represent S as a bit matrix:
$$M_S = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Rosen 9.4.25(b). Use Algorithm 1 (Given on page 603) to compute the transitive closure of the relation $\{(2,1), (2,3), (3,1), (3,4), (4,1), (4,3)\}$ on the set $\{1, 2, 3, 4\}$.
 - We note the matrix of a relation R^x resulting from the composing the relation Rwith itself x times: M_{R^x} , alternatively: $M_R^{[x]}$.
 - We note the relations composition operator \circ and the matrix product operator \cdot , alternatively, \odot .

$$M_{R} = M_{R^{1}} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$
$$M_{R^{2}} = M_{R^{1} \circ R^{1}} = M_{R^{1}} \cdot M_{R^{1}} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

$$M_{R^{3}} = M_{R \circ R^{2}} = M_{R^{2}} \cdot M_{R^{1}} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$
$$M_{R^{4}} = M_{R \circ R^{3}} = M_{R^{3}} \cdot M_{R^{1}} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{split} M_{R^*} &= M_{R^1} \lor M_{R^2} \lor M_{R^3} \lor M_{R^4} \\ &= \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \lor \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \lor \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix} \lor \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \\ &= \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix} \end{split}$$

• Rosen 9.4.27(b)

$$M_{R} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} W_{1} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} W_{2} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix} W_{3} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$
$$W_{4} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

So the transitive closure looks like $\{(2,1),(2,3),(2,4),(3,1),(3,3),(3,4),(4,1),(4,3),(4,4)\}$ Is this transitive? **Yes**

- The following are relations on $\{1,2,3,0\}$ are they equivalence relations?
 - $\{(0,0),(1,1),(2,2),(3,3)\}$ Yes this one is fairly obvious, as everything just relates back to itself.
 - $\{(0,2),(2,0),(2,2),(2,3),(3,2),(3,3)\}$ No, missing (0,0) (I removed it this is not identical to 9.5 #1), so not reflexive.
 - $\{(0,0),(1,1),(1,2),(2,1),(2,2),(3,3)\}$ Yes

- Problem number 47 from 9.5: $\{0\}, \{1,2\}, \{3,4,5\}$
 - So here we'll have (a, b) iff a and b are in the same subset
 - So, (0, 0) is an element.
 - -(1,1),(1,2),(2,1),(2,2) are elements.
 - (3,3),(3,4),(3,5),(4,3),(4,4),(4,5),(5,3),(5,4),(5,5) are also elements.
 - $So our equivalence relation is: \{(0,0), (1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (3,5), (4,3), (4,4), (4,5), (5,3), (4,3), (4,4), (4,5), (5,3), (4,5), (4,5), (4,5), (4,5), (5,3), (4,5),$