
Week 5 Recitation

Taylor Spangler

February 6, 2012

• (3 min max) Go over quiz from last week

• (3 min max) Go over homework from last week.

• Questions about lecture / homework so far?

• 1.7:23) Show that at least 10 of any 64 days chosen must fall on the same day of the
week.

– We proceed with a proof by contradiction.

– First, for the purposes of contradiction, we assume that it is not the case that “at
least 10 days of any 64 days chosen fall on the same day of the week.”

– So “less than 10 days of any 64 days chosen fall on the same day of the week.”
Assume, it is 9 days. Then we have “9 days of any 64 days chosen fall on the
same day of the week.”

– There are 7 days in a week. If we choose 9 days out of every day of the week,
then we have chosen 9× 7days = 63 days, exactly.

– However, we need to choose 64 days. Therefore, there is one extra day that needs
to be chosen. Whichever day we choose, this choice will bump up the ‘count’ of
chosen days to 10, which contradicts the statement “9 days of any 64 days chosen
fall on the same day of the week.”

– Therefore, at least 10 of any 64 days chosen must fall on the same day of the
week.

• Now a similar example: let’s look at problem 1.7:27. Show that, given a positive integer
n, then n is odd if and only if (iff) 5n + 6 is odd.

– First we prove the → direction.

1. Let n be a positive integer that is odd. So n can be written 2k + 1 for some
integer k ≥ 0. So 5n + 6 = 5× (2k + 1) + 6.

2. This is 10k + 5 + 6 = 10k + 11

3. This can again be rewritten 2(5k + 5) + 1
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4. We can then substitute b for 5k + 5, since we know 5k + 5 is still a positive
integer.

5. So 5n + 6 = 2b + 1...clearly 2b + 1 has the form of an odd number.

6. So 5n + 6 is odd �

– Now let’s prove the ← direction.

1. For the purposes of a contrapositive, let’s assume that if n is even, then 5n+6
is even.

2. So, let n = 2k for some positive integer k by definition (note this is ¬p.

3. Then (5× 2k) + 6 = 10k + 6.

4. But we can see that this is even, and can be rewritten 2(5k + 3) = 2(b) for
some positive integer b.

5. So 5n + 6 = 2b (¬q).

6. So if n is even 5n + 6 is even.

7. By contraposition, if 5n + 6 is odd, n is odd. �

• Example from: http://marauder.millersville.edu/ bikenaga/mathproof/rules-of-inference/rules-
of-inference.html (Note, the url no longer works).
Given:

1. p ∧ q

2. p→ ¬(q ∧ r)

3. s→ r

Prove ¬s using the rules of inference.

Step Reason
1. p ∧ q Premise
2. p→ ¬(q ∧ r) Premise
3. s→ r Premise
4. p Simplification of (1)
5. q Simplification of (1)
6. ¬(q ∧ r) Modus Ponens (2) and (4)
7. ¬q ∨ ¬r DeMorgan’s Law (6)
8. ¬r Disjunctive syllogism (5) and (7)
9. ¬s Modus Tollens (3) and (8)

• 1.6:15a) Given

1. All students in this class understand logic.

2. Xavier is a student in this class.

Prove that, Xavier understands logic.
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– Define your predicates:

∗ Q(x): x is in the class

∗ P (x): x understands logic

– Universe of Discourse: All students

– Theory:

1. ∀xP (x)→ Q(x)

2. P (Xavier)

– We want to prove : Q(Xavier)

– Proof:
Step Reason

1. ∀xP (x)→ Q(x) Premise
2. P (Xavier) Premise
3. P (Xavier)→ Q(Xavier) Universal instantiation from (1)
4. Q(Xavier) Modus ponens from (2) and (3)

• Now problem 1.6:19 Determine whether the following argument is valid. If so, what
rule of inference is being used, if not what logical error occurs:
b) If n is a real number with n ≥ 3, then n2 ≥ 9. Suppose n2 ≤ 9 then n ≤ 3.

1. Is this true? Yes

2. Is this a valid argument? Yes, using the rule of inference modus tollence.

c) If n is a real number with n ≥ 2, then n2 ≥ 4. Suppose n ≤ 2 then n2 ≤ 4.

1. Is this a valid argument? No this is denying the hypothesis

• What rules of inference are used in Lewis Carroll’s poem from example 26 in 1.4.

– 1. All lions are fierce.

2. Some lions do not drink coffee

3. Some fierce creatures do not drink coffee.

– By the second premise, we have that there is a lion that does not drink coffee, let
that lion be Leo.

– Using simplification we can tell that Leo is a lion.

– Now using modus ponens on the first premise we know that Leo is fierce.

– So Leo is fierce and does not drink coffee

– Now using existential generalization, we can say that there exists a creature that
is fierce, and does not drink coffee.

• (Last 12 minutes) Give quiz
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