Recitation 13

Taylor Spangler

April 16, 2012

- (3 min max) Questions about last week's quiz?
- Questions about lecture / homework so far?
- Today, Asymptotics and Summations
- The following is problem 3.2:25 - Give a good big- O estimate for the following:
$-\left(n^{2}+8\right)(n+1)$, well we can see that this becomes $n^{3}+n^{2}+8 n+1 \ldots$ this is clearly $O\left(n^{3}\right)$
$-\left(n \log n+n^{2}\right)\left(n^{3}+1\right)$, becomes $n^{5}+n^{4} \log n+n^{2}+n \log n$, again easily this is $O\left(n^{5}\right)$
$-\left(n!+2^{n}\right)\left(n^{3}+\log \left(n^{2}+1\right)\right)$, becomes $n!* n^{3}+n!* \log \left(n^{2}+1\right)+2^{n} * n^{3}+2^{n} * \log \left(n^{2}+1\right)$.
Well, this one is a little bit trickier, any guesses? It is actually $O\left(n!* n^{3}\right)$, can anybody tell me why it's not $O(n!)$ or 2^{n}
- Now, problem 3.2:31 - Show that $f(x) \in \Theta(g(x))$ iff $f(x) \in O(g(x))$ and $g(x) \in$ $\Theta(f(x))$.

1. \Rightarrow First we begin with a definition: $f(x) \in \Theta(g(x))$ if $f(x) \in O(g(x))$ and $f(x) \in \Omega(g(x))$

- So we can see that $\exists c$ such that $f(x) \leq c * g(x)$. We also know that $f(x) \geq$ $c * g(x)$.
- Reversing the second inequality we get $g(x) \leq c * f(x)$ (really $\frac{1}{c}$, but that is also a constant so we'll just use c here for purposes of simplicity.
- So then we have $f(x) \in O(g(x))$ and $g(x) \in O(f(x))$
$2 . \Leftarrow$
- Suppose $f(x) \in O(g(x))$ and $g(x) \in O(f(x))$.
- Then we know that $f(x) \leq c_{1} * g(x)$ and $g(x) \leq c_{2} * f(x)$.
- so $\frac{1}{c_{1}} g(x) \leq f(x) \leq c_{2} * g(x)$.
- But this is the definition of Θ, therefore $f(x) \in \Theta(g(x))$.
- What is the tightest bound we can form here:

1. $x^{2}+3 x+5 \in ? ? ?\left(x^{3}\right):$ big-O
2. $2^{n} \log (6)+n^{2} \in ? ? ?\left(2^{n}\right): \Theta$
3. $2^{n} * n!+2^{n} \log (n) \in ? ? ?\left(2^{n}\right): \Omega$

- Why don't we prove the first one of the previous problem? Let's use the limit method
$-\lim _{x \rightarrow \infty} \frac{x^{2}+3 x+4}{x^{3}}=\lim _{x \rightarrow \infty} \frac{2 x+3}{3 x^{2}}=\lim _{x \rightarrow \infty} \frac{2}{6 x}=0$
- Therefore we can conclude that x^{3} grows much faster, and so we get that $x^{2}+$ $3 x+4 \in O\left(x^{3}\right)$
- Next up Sequences: Can we name the first 4 terms of the following sequence?

1. $a_{0}=2^{0}+1=1$
2. $a_{1}=2^{1}+1=3$
3. $a_{2}=2^{2}+1=5$
4. $a_{3}=2^{3}+1=9$

- Now compute the following sum $\sum_{i=1}^{5} 6$
- Well clearly this is just $6+6+6+6+6=6^{*} 5=30$
- How about the following geometric $\sum_{i=1}^{8} 3 * 2^{i}$
- Well here we can recognize that this is a geometric sum $\sum_{i=0}^{n} a r^{i}$ only here we start at 1 instead of zero, so we can simply compute it by subtracting the first term from the sum.
- The formula for computing this is $\frac{a * r^{n+1}-a}{r-1}$, here $r=2$ and $a=3$
- Using the formula we can get $\frac{3 * 2^{9}-3}{1}=3^{*} 512-3=1533$
- But remember we have to subtract the first term, so 1533-3* $2^{0}=1530$.

