Recitation 13

Taylor Spangler

April 16, 2012

- (3 min max) Questions about last week's quiz?
- Questions about lecture / homework so far?
- Today, Asymptotics and Summations
- The following is problem 3.2:25 Give a good big-O estimate for the following:
 - $-(n^2+8)(n+1)$, well we can see that this becomes n^3+n^2+8n+1 ...this is clearly $O(n^3)$
 - $(n \log n + n^2)(n^3 + 1)$, becomes $n^5 + n^4 \log n + n^2 + n \log n$, again easily this is $O(n^5)$
 - $-(n!+2^n)(n^3+\log(n^2+1))$, becomes $n!*n^3+n!*\log(n^2+1)+2^n*n^3+2^n*\log(n^2+1)$. Well, this one is a little bit trickier, any guesses? It is actually $O(n!*n^3)$, can anybody tell me why it's not O(n!) or 2^n
- Now, problem 3.2:31 Show that $f(x) \in \Theta(g(x))$ iff $f(x) \in O(g(x))$ and $g(x) \in \Theta(f(x))$.
 - 1. \Rightarrow First we begin with a definition: $f(x) \in \Theta(g(x))$ if $f(x) \in O(g(x))$ and $f(x) \in \Omega(g(x))$
 - So we can see that $\exists c$ such that $f(x) \leq c * g(x)$. We also know that $f(x) \geq c * g(x)$.
 - Reversing the second inequality we get $g(x) \leq c * f(x)$ (really $\frac{1}{c}$, but that is also a constant so we'll just use c here for purposes of simplicity.
 - So then we have $f(x) \in O(g(x))$ and $g(x) \in O(f(x))$
 - $2. \Leftarrow$
 - Suppose $f(x) \in O(g(x))$ and $g(x) \in O(f(x))$.
 - Then we know that $f(x) \le c_1 * g(x)$ and $g(x) \le c_2 * f(x)$.
 - $\text{ so } \frac{1}{c_1}g(x) \le f(x) \le c_2 * g(x).$
 - But this is the definition of Θ , therefore $f(x) \in \Theta(g(x))$.

• What is the tightest bound we can form here:

1.
$$x^2 + 3x + 5 \in ???(x^3)$$
: big-O

2.
$$2^n \log(6) + n^2 \in ???(2^n)$$
: Θ

3.
$$2^n * n! + 2^n \log(n) \in ????(2^n)$$
: Ω

• Why don't we prove the first one of the previous problem? Let's use the limit method

$$- \lim_{x \to \infty} \frac{x^2 + 3x + 4}{x^3} = \lim_{x \to \infty} \frac{2x + 3}{3x^2} = \lim_{x \to \infty} \frac{2}{6x} = 0$$

- Therefore we can conclude that x^3 grows much faster, and so we get that $x^2 + 3x + 4 \in O(x^3)$
- Next up Sequences: Can we name the first 4 terms of the following sequence?

1.
$$a_0 = 2^0 + 1 = 1$$

$$2. \ a_1 = 2^1 + 1 = 3$$

3.
$$a_2 = 2^2 + 1 = 5$$

4.
$$a_3 = 2^3 + 1 = 9$$

- Now compute the following sum $\sum_{i=1}^{5} 6$
 - Well clearly this is just 6+6+6+6+6=6*5=30
- \bullet How about the following geometric $\sum_{i=1}^8 3*2^i$
 - Well here we can recognize that this is a geometric sum $\sum_{i=0}^{n} ar^{i}$ only here we start at 1 instead of zero, so we can simply compute it by subtracting the first term from the sum.
 - The formula for computing this is $\frac{a*r^{n+1}-a}{r-1}$, here r=2 and a=3
 - Using the formula we can get $\frac{3*2^9-3}{1}=3*512$ 3=1533
 - But remember we have to subtract the first term, so $1533 3 * 2^0 = 1530$.