Recitation 12

Taylor Spangler

April 9, 2012

- (3 min max) Questions about last week's quiz?
- Questions about lecture / homework so far?
- MAPLE!!!!
- Induction:Let's try a strong induction proof.

Show that if $n \in \mathbb{N}$ then $12 \mid (n^4 - n^2)$.

1. Base Case:

- (a) n = 1: $1^4 1^2 = 0 = 12 * 0$ so P(1) is true.
- (b) $n = 2: 2^4 2^2 = 16 4 = 12 = 12 * 1$ so P(2) is true.
- (c) $n = 3: 3^4 3^2 = 81 9 = 72 = 12 * 6$ so P(3) is true.
- (d) $n = 4: 4^4 4^2 = 256 16 = 240 = 12 \times 20$ so P(4) is true.
- (e) $n = 5: 5^4 5^2 = 625 25 = 600 = 12 \times 50$ so P(5) is true.
- (f) $n = 6: 6^4 6^2 = 1296 36 = 1260 = 12 \times 105$ so P(6) is true
- 2. Strong Inductive Hypothesis Let $k \ge 6 \in \mathbb{N}$ and assume that $12 \mid (m^4 m^2)$ for $1 \le m \le k$ where $m \in \mathbb{N}$.
- 3. Let i = k 5, then we can assume P(i) holds. Clearly i + 6 = k + 1.
- 4. $(i+6)^4 (i+6)^2 = (i^4 + 24i^3 + 180i^2 + 864i + 1296) (i^2 + 12i + 36) = (i^4 i^2) + 24i^3 + 180i^2 + 852i + 1260$
- 5. Clearly $i^4 i^2 = 12 * t$.
- 6. We can also see that the remaining portion can be rewritten as $12(2i^3 + 15i^2 + 71i + 105)$.
- 7. Then we have that $(k+1)^4 (k+1)^2 = 12t + 12(2i^3 + 15i^2 + 71i + 105) = 12*(t+2i^3 + 15i^2 + 71i + 105)$
- 8. Then we have that $12 \mid (k+1)^4 (k+1)^2$.

- Algorithms Greedy algorithm for optimal change making:
 - Start with the largest value coin, then as the value remaining decreases below that of the largest value coin, begin using smaller values:
 - * Example make change for 84 cents
 - * Pick 25 we still have 59 cents
 - * Pick 25, we still have 34 cents
 - * Pick 25, we still have 9 cents
 - * Can't pick 10, pick 5 we still have 4 cents
 - * ...eventually picking 4 pennies.
 - * Total of 8 coins
 - Is this algorithm correct (sound)? No, suppose we had a 21 cent value coin...this algorithm would give 8 coins (as above), but the optimal would be 4-21 cent coins. (it is sound if we do limit ourselves to the standard US coins though)
 - Is this algorithm complete? It will always give an answer, even if it has to use pennies
 - Is this algorithm finite? Yes, it will never take an infinite amount of steps.
- Algorithm 2e...let's write this algorithm using algorithm 2e

 $C \leftarrow \{100, 25, 10, 5, 1\}$ $S \leftarrow \emptyset$ //cointains solution $t \leftarrow 0$; //contains the sum of elts in S 4 while $t \neq n$ do

- $x \leftarrow \text{largest elt in } C \text{ such that } x + t \le n \ S \leftarrow S \cup \{\text{coin of value } x\} \ t \leftarrow t + x$
- 6 end
- 7 Return S

```
Algorithm 1: makeChange(n)
```

- Is this algorithm efficient in terms of the running time?
 - Running time:
 - So this requires at most n iterations through the loop. So one might think that this is linear.
 - However, the input to the function is n, which is of size $\log(n)$.
 - So since $n = 2^{\log(n)}$ then we get exponential time with respect to the input.