Due: Wednesday, April 25, 2012	
Name(Print)	CSE Login
Name 2(Print)	CSE Login

Problem	Page	Notes	Points	Score
Problem A		See Below	9	
Problem B		See next page	9	
Problem C		See next page	8	
8.1.8	511		6	
8.1.28	512		6	
8.2.4 (a,b,c,d)	524		8	
8.2.12	525		4	
(Bonus) $8.3.14$	535	Also give a big-O estimate for your recurrence	6	
8.3.22	535		4	
Typesetting (bo	onus)		5	
Total			54	

Problem A Given the recurrence relation T(n) = 3T(n/2) + 3, and the initial condition T(1) = 5, draw the recurrence tree, clearly stating:

1. (1 Point) The root of the tree.

CSE 235

- 2. (1 Point) The first three levels of the tree.
- 3. (1 Point) The last level of the tree.
- 4. (1 Point) The height of the tree.
- 5. (1 Point) The size of each (sub)problem at each of the above levels.
- 6. (2 Points) The non-recursive cost at each of the above levels.
- 7. (2 Points) Give the asymptotic characterization of T(n) (Using Master Theorem).

Problem B Given the recurrence relation T(n) = 2T(n/15) + 3n + 2, and the initial condition T(1) = 1, draw the recurrence tree, clearly stating:

- 1. (1 Point) The root of the tree.
- 2. (1 Point) The first three levels of the tree.
- 3. (1 Point) The last level of the tree.
- 4. (1 Point) The height of the tree.
- 5. (1 Point) The size of each (sub)problem at each of the above levels.
- 6. (2 Points) The non-recursive cost at each of the above levels.
- 7. (2 Points) Give the asymptotic characterization of T(n) (Using Master Theorem).

Problem C For the following recurrences, provide an asymptotic characterization (you need not solve them)

a)
$$T(n) = T(n/3) + 1$$

b)
$$T(n) = 2T(n/3) + 3$$

- c) $T(n) = T(n/5) + 3n^2$
- d) T(n) = 2T(n/3) + 4
- e) T(n) = 2T(n/2) + 7n

Instructions Follow instructions *carefully*, failure to do so may result in points being deducted.

- The homework can be submitted on paper or via handin. Homework *neatly* formatted in LATEX will receive a 10 point bonus. You will not receive the 10 bonus points if you work with a partner (see below).
- Clearly label each problem and submit answers *in order*.
- Staple this cover page to the front of your assignment for easier grading.
- Late submissions will not be accepted
- When you are asked to prove something, you must give a formal, rigorous, and complete a proof as possible. Each step in your proof must contain explanation that would allow us to understand what theorem/logic you have applied to arrive at that step.
- You are to work individually, and all work should be your own. Check partner policy below.
- The CSE academic dishonesty policy is in effect (see http://cse.unl.edu/ugrad/resources/academic_integrity.php).

Partner Policy You may work in pairs, but you must follow these guidelines:

- 1. You must work *all* problems *together*. You may not simply partition the work between you.
- 2. You must use LATEX and you may divide the typing duties however you wish.
- 3. You may not discuss the problems with other groups or individuals.
- 4. Hand in only one hard copy with both author's names.