Due: Friday, April 20, 2012

 Name(Print)
 CSE Login

 Name 2(Print)
 CSE Login

3.2.14	216	Justify your answer	6	
3.2.16	216		4	П
3.2.22	216		4	П
3.2.26	216	No need to prove your answer	3	П
3.2.30(b,c,e)	217	Prove your answer	6	П
3.2.32	217		3	
(Bonus) 3.2.38	217		5	
Problem A		See Below	6	
Problem B		See Next Page	16	
2.4.4	167		4	
2.4.6 (c,d,e)	167		6	
2.4.26(a,b,e)	168		6	
(Bonus) 2.4.26 (c,d)	168		4	
2.4.30	169		8	
2.4.32 (a,b,d)	169		6	
2.4.34 (a,b,c)	169		6	
2.4.40	217		3	
(Bonus) 2.4.38	169		5	
Typesetting (bonus)			6	
Total			87	

Problem A Order the following functions in non-decreasing order of growth. You need not give a formal proof for each.

1.
$$6n \log (n) + 2n$$
, $(\frac{1}{3})^n$, n^n , $\log \log (n)$.

2.
$$\log^2(n)$$
, $\frac{1}{n}$, 2^{10} , $n-n^3+6n^5$, $\frac{n}{\log(n)}$, $n!$.

3.
$$2^{\log(n)}$$
, 2^n , 2^4n , 4^2n , $3n + \log(n^{100})$, $\log(n) \log\log(n)$

Problem B Give a tight bound of the form $f(n) \in \Delta(g(n))$ for the following pairs of functions, knowing that $(\log_b(f(x))' = \frac{f'(x)}{f(x)\ln b}$:

- 1. (4 points) $f(x) = x^2 \log x$ and $g(x) = x^3$
- 2. (4 points) $f(x) = x^4 + \log(3x^8 + 7)$ and $g(x) = (x^2 + 17x + 3)^2$
- 3. (4 points) $f(x) = \log(x^2 + 1)$ and $g(x) = \log(x)$.
- 4. (4 points) $f(x) = 2^{2^x}$ and $g(x) = 2^{x^2}$

Instructions Follow instructions *carefully*, failure to do so may result in points being deducted.

- The homework can be submitted on paper or via handin. Homework *neatly* formatted in LaTeXwill receive a 10 point bonus. You will not receive the 10 bonus points if you work with a partner (see below).
- Clearly label each problem and submit answers in order.
- Staple this cover page to the front of your assignment for easier grading.
- Late submissions will not be accepted
- When you are asked to prove something, you must give a formal, rigorous, and complete a proof as possible. Each step in your proof must contain explanation that would allow us to understand what theorem/logic you have applied to arrive at that step.
- You are to work individually, and all work should be your own. Check partner policy below.
- The CSE academic dishonesty policy is in effect (see http://cse.unl.edu/ugrad/resources/academic_integrity.php).

Partner Policy You may work in pairs, but you must follow these guidelines:

- 1. You must work all problems together. You may not simply partition the work between you.
- 2. You must use LATEX and you may divide the typing duties however you wish.
- 3. You may not discuss the problems with other groups or individuals.
- 4. Hand in only one hard copy with both author's names.