CSE 235

Due: Friday, March 2, 2012

Name(Print) _____

CSE Login _____

Name 2(Print) _____

CSE Login _____

Problem	Page	Notes	Points	Score
2.2.4	136		4	
2.2.14	136		5	
2.2.18 a,c,d	136		6	
(Bonus) 2.2.24	136	Give a formal proof	3	
(Bonus) 2.2.26	136		3	
2.3.2	152	Yes/No answers	3	
2.3.20	153		4	
2.3.34	154		6	
2.3.40	154		8	
(Bonus)2.3.70	154		5	
(Bonus)2.3.74 a,b,c	154		6	
Problem A	n/a	See Below	9	
Problem B	n/a	See Next Page	20	
Problem C	n/a	See Below	12	
Typesetting (bonus)			8	
Total			77	

Problem A (2.3.10)

Let $f: \{a, b, c, d\} \rightarrow \{a, b, c, d\}$, for each of function f defined below

- 1. f(a) = b, f(b) = a, f(c) = c, f(d) = d.
- 2. f(a) = b, f(b) = b, f(c) = d, f(d) = c.
- 3. f(a) = d, f(b) = a, f(c) = c, f(d) = d.
- 1. Determine whether f is one-to-one (injective).
- 2. Determine whether f is onto (surjective).
- 3. Determine whether f is one-to-one correspondence (bijective).

CSE 235

Problem B (2.3.12)

For <u>each</u> function $f : \mathbb{Z} \to \mathbb{Z}$

- f(n) = n 1.
- $f(n) = n^2 + 1$.

•
$$f(n) = n^3$$
.

•
$$f(n) = \lceil \frac{n}{2} \rceil$$
.

- 1. Determine whether each f is one-to-one (injective).
- 2. Determine whether each f is onto (surjective).
- 3. Determine whether each f is one-to-one correspondence (bijective).
- 4. Determine whether each f is invertible. If so, give f^{-1} . If not, give the largest domain for which f is invertible and find f^{-1} .

(You should have a total of 16 answers.)

Problem C

For functions $f(x) = x^2 + x$ and g(x) = x - 2 from \mathbb{R} to \mathbb{R} , find:

- 1. $f \circ g$
- 2. $g \circ f$
- 3. $f \circ f$
- 4. $g \circ g$

Note: we have rng(f) = rng(g) = domain(f) = domain(g).

Instructions Follow instructions *carefully*, failure to do so may result in points being deducted.

- The homework can be submitted on paper or via handin. Homework *neatly* formatted in LATEX will receive a 10 point bonus. You will not receive the 10 bonus points if you work with a partner (see below).
- Clearly label each problem and submit answers *in order*.
- Staple this cover page to the front of your assignment for easier grading.
- Late submissions will not be accepted
- When you are asked to prove something, you must give a formal, rigorous, and complete a proof as possible. Each step in your proof must contain explanation that would allow us to understand what theorem/logic you have applied to arrive at that step.
- You are to work individually, and all work should be your own. Check partner policy below.
- The CSE academic dishonesty policy is in effect (see http://cse.unl.edu/ugrad/resources/academic_integrity.php).

Partner Policy You may work in pairs, but you must follow these guidelines:

- 1. You must work *all* problems *together*. You may not simply partition the work between you.
- 2. You must use LATEX and you may divide the typing duties however you wish.
- 3. You may not discuss the problems with other groups or individuals.
- 4. Hand in only one hard copy with both author's names.