Example of how to use Algorithm2e

Robert Woodward

April 4, 2011

Below we illustrate the formatting as pseudo code of some sample of simple algorithms. The goal is not to entice you to use IATEX for formatting your algorithms as currently the best possible formatting tool for algorithms. Please carefully check the source files and learn how to use this style. Importantly:

- Always state your input
- State the output if any
- Always number your lines for quick referral.
- Always declare and initialize your local variables
- Always use \gets for assignments
- Always end with "return" even when not returning any values
- Use common functions and operands such as Union, PowerSet, etc. as often as needed, unless you are asked to define them.

Algorithm 1 will find the maximum element in a finite sequence (Slide 14 in Class Slides).

```
Algorithm 1: Max finds the maximum number
    Input: A finite set \(A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\) of integers
    Output: The largest element in the set
    \(\max \leftarrow a_{1}\)
    for \(i \leftarrow 2\) to \(n\) do
        if \(a_{i}>\max\) then
            \(\max \leftarrow a_{i}\)
    return max
```

Algorithm 2 is a greedy change-making algorithm (Slide 19 in Class Slides).
Algorithm 3 and Algorithm 4 will find the first duplicate element in a sequence of integers.

```
Algorithm 2: CHANGE Makes change using the smallest number of coins
    Input: A set \(C=\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}\) of denominations of coins, where
    \(c_{i}>c_{2}>\ldots>c_{r}\) and a positive number \(n\)
    Output: A list of coins \(d_{1}, d_{2}, \ldots, d_{k}\), such that \(\sum_{i=1}^{k} d_{i}=n\) and \(k\) is
                        minimized
    \(C \leftarrow \emptyset\)
    for \(i \leftarrow 1\) to \(r\) do
        while \(n \geq c_{i}\) do
            \(C \leftarrow C \cup\left\{c_{i}\right\}\)
            \(n \leftarrow n-c_{i}\)
    return \(C\)
```

```
Algorithm 3: FindDuplicate
    Input: A sequence of integers \(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\)
                    location in the sequence
    location \(\leftarrow 0\)
    \(i \leftarrow 2\)
    while \(i \leq n\) and location \(=0\) do
        \(j \leftarrow 1\)
        while \(j<i\) and location \(=0\) do
            if \(a_{i}=a_{j}\) then
            location \(\leftarrow i\)
            else
                \(j \leftarrow j+1\)
        \(i \leftarrow i+1\)
    return location
```

 Output: The index of first location witht he same value as in a previous
    ```
Algorithm 4: FindDuplicate2
    Input: A sequence of integers \(\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\)
                    location in the sequence
    location \(\leftarrow 0\)
    \(i \leftarrow 2\)
    while \(i \leq n \wedge\) location \(=0\) do
        \(j \leftarrow 1\)
        while \(j<i \wedge\) location \(=0\) do
            if \(a_{i}=a_{j}\) then location \(\leftarrow i\)
            else \(j \leftarrow j+1\)
        \(i \leftarrow i+1\)
    return location
```

 Output: The index of first location witht he same value as in a previous