Example of how to use Algorithm2e

Robert Woodward

April 4, 2011

Below we illustrate the formatting as pseudo code of some sample of simple algorithms. The goal is not to entice you to use LATEX for formatting your algorithms as currently the best possible formatting tool for algorithms. Please carefully check the source files and learn how to use this style. Importantly:

- Always state your input
- State the output if any
- Always number your lines for quick referral.
- Always declare and initialize your local variables
- Always use \gets for assignments
- Always end with "return" even when not returning any values
- Use common functions and operands such as UNION, POWERSET, etc. as often as needed, unless you are asked to define them.

Algorithm 1 will find the maximum element in a finite sequence (Slide 14 in Class Slides).

Algorithm 1: MAX finds the maximum number
Input : A finite set $A = \{a_1, a_2, \dots, a_n\}$ of integers
Output : The largest element in the set
1 $max \leftarrow a_1$
2 for $i \leftarrow 2$ to n do
3 if $a_i > max$ then
$4 \ \ \ \ 4 \ \ \ \ 4 \ \ \ \ \ \ \ \ \ 4 \ \ \ \ 4 \ \ \ 4 \ \ \ 4 \ \ \ 4 \ \ \ 4 \ \ \ 4 \ \ \ 4 \ \ \ 4 \ \ \ 4 \ 4 \ \ 4 \ \ 4 \ \ 4 \ 4 \ 4$
5 return max

Algorithm 2 is a greedy change-making algorithm (Slide 19 in Class Slides). Algorithm 3 and Algorithm 4 will find the first duplicate element in a sequence of integers.

Algorithm 2: CHANGE Makes change using the smallest number of coins

Input: A set $C = \{c_1, c_2, \dots, c_r\}$ of denominations of coins, where $c_i > c_2 > \dots > c_r$ and a positive number nOutput: A list of coins d_1, d_2, \dots, d_k , such that $\sum_{i=1}^k d_i = n$ and k is minimized 1 $C \leftarrow \emptyset$ 2 for $i \leftarrow 1$ to r do 3 while $n \ge c_i$ do 4 $C \leftarrow C \cup \{c_i\}$ 5 $C \leftarrow n - c_i$

6 return C

Algorithm 3: FINDDUPLICATE

Input: A sequence of integers $\langle a_1, a_2, \ldots, a_n \rangle$ **Output**: The index of first location with the same value as in a previous location in the sequence **1** location $\leftarrow 0$ $\mathbf{2} \ i \leftarrow 2$ **3** while $i \leq n$ and location = 0 do $j \leftarrow 1$ 4 while j < i and location = 0 do $\mathbf{5}$ if $a_i = a_j$ then 6 $location \leftarrow i$ $\mathbf{7}$ else 8 $j \leftarrow j + 1$ 9 $\mathbf{10}$ $i \leftarrow i + 1$ 11 return location

Algorithm 4: FINDDUPLICATE2

Input: A sequence of integers $\langle a_1, a_2, \ldots, a_n \rangle$ Output: The index of first location with the same value as in a previous location in the sequence **1** location $\leftarrow 0$ $\mathbf{2} \ i \leftarrow 2$ **3 while** $i \leq n \wedge location = 0$ **do** $j \leftarrow 1$ 4 while $j < i \land location = 0$ do $\mathbf{5}$ if $a_i = a_i$ then $location \leftarrow i$ 6 else $j \leftarrow j+1$ $\mathbf{7}$ $i \leftarrow i+1$ 8 9 return location