Induction

Sections 5.1 and 5.2 of Rosen 7th Edition

Spring 2012
CSCE 235 Introduction to Discrete Structures
Course web-page: cse.unl.edu/~cse235

Questions: Piazza
Outline

• Motivation

• What is induction?
 – Viewed as: the Well-Ordering Principle, Universal Generalization
 – Formal Statement
 – 6 Examples

• Strong Induction
 – Definition
 – Examples: decomposition into product of primes, gcd
Motivation

• How can we prove the following proposition?
 \[\forall x \in S \ P(x) \]

• For a finite set \(S = \{s_1, s_2, \ldots, s_n\} \), we can prove that \(P(x) \) holds for each element because of the equivalence
 \[P(s_1) \land P(s_2) \land \ldots \land P(s_n) \]

• For an infinite set, we can try to use **universal generalization**

• Another, more sophisticated way is to use **induction**
What Is Induction?

• If a statement $P(n_0)$ is true for some nonnegative integer say $n_0 = 1$
• Suppose that we are able to prove that if $P(k)$ is true for $k \geq n_0$, then $P(k+1)$ is also true
 \[P(k) \implies P(k+1) \]
• It follows from these two statement that $P(n)$ is true for all $n \geq n_0$, that is
 \[\forall n \geq n_0 \, P(n) \]
• The above is the basis of induction, a widely used proof technique and a very powerful one
The Well-Ordering Principle

• Why induction is a legitimate proof technique?
• At its heart, induction is the Well Ordering Principle
• **Theorem:** Principle of Well Ordering. Every nonempty set of nonnegative integers has a least element
• Since, every such has a least element, we can form a basis case (using the least element as the basis case n_0)
• We can then proceed to establish that the set of integers $n \geq n_0$ such that $P(n)$ is false is actually empty
• Thus, induction (both ‘weak’ and ‘strong’ forms) are logical equivalences of the well-ordering principle.
Another View

• To look at it in another way, assume that the statements

 (1) $P(n_0)$

 (2) $P(k) \implies P(k+1)$

 are true. We can now use a form of universal generalization as follows

• Say we choose an element c of the UoD. We wish to establish that $P(c)$ is true. If $c=n_0$, then we are done

• Otherwise, we apply (2) above to get

 $P(n_0) \implies P(n_0+1)$, $P(n_0+1) \implies P(n_0+2)$, $P(n_0+1) \implies P(n_0+3)$, ..., $P(c-1) \implies P(c)$

 Via a finite number of steps $(c-n_0)$ we get that $P(c)$ is true.

• Because c is arbitrary, the universal generalization is established and

 $\forall n \geq n_0 \ P(n)$
Outline

• Motivation
• What is induction?
 – Viewed as: the Well-Ordering Principle, Universal Generalization
 – Formal Statement
 – 6 Examples
• Strong Induction
 – Definition
 – Examples: decomposition into product of primes, gcd
Induction: Formal Definition (1)

• **Theorem**: Principle of Mathematical Induction

Given a statement P concerning the integer n, suppose

1. P is true for some particular integer n_0, $P(n_0) = 1$
2. If P is true for some particular integer $k \geq n_0$ then it is true for $k+1$: $P(k) \rightarrow P(k+1)$

Then P is true for all integers $n \geq n_0$, that is

$$\forall n \geq n_0 \text{ } P(n) \text{ is true}$$
Induction: Formal Definition (2)

• Showing that $P(n_0)$ holds for some initial integer n_0 is called the **Basis Step**
• The assumption $P(k)$ is called the **inductive hypothesis**
• Showing the implication $P(k) \rightarrow P(k+1)$ for every $k \geq n_0$ is called the **Inductive Step**
• Together, induction can be expressed as an inference rule:

$$ (P(n_0) \land (\forall k \geq n_0 \ P(k) \rightarrow P(k+1)) \rightarrow \forall n \geq n_0 \ P(n) $$
Steps

1. Form the general statement
2. Form and verify the base case (basis step)
3. Form the inductive hypothesis
4. Prove the inductive step
Example A (1)

• Prove that $n^2 \leq 2^n$ for all $n \geq 5$ using induction

• We formalize the statement $P(n) = (n^2 \leq 2^n)$

• Our *basis case* is for $n=5$. We directly verify that

$$25 = 5^2 \leq 2^5 = 32$$

so $P(5)$ is true and thus the basic step holds

• We need now to perform the inductive step
Example A (2)

- Assume $P(k)$ holds (the inductive hypothesis). Thus, $k^2 \leq 2^k$

- Now, we need to prove the inductive step. For all $k \geq 5$,
 $$(k+1)^2 = k^2 + 2k + 1 < k^2 + 2k + k \quad \text{(because } k \geq 5 > 1)$$
 $$< k^2 + 3k < k^2 + k \cdot k \quad \text{(because } k \geq 5 > 3)$$
 $$< k^2 + k^2 = 2k^2$$

- Using the inductive hypothesis ($k^2 \leq 2^k$), we get
 $$(k+1)^2 < 2k^2 \leq 2 \cdot 2^k = 2^{k+1}$$

- Thus, $P(k+1)$ holds
Example B (1)

• Prove that for any $n \geq 1$, $\sum_{i=1}^{n} (i^2) = \frac{n(n+1)(2n+1)}{6}$

• The basis case is easily verified $1^2=1= \frac{1(1+1)(2+1)}{6}$

• We assume that $P(k)$ holds for some $k \geq 1$, so

 $\sum_{i=1}^{k} (i^2) = \frac{k(k+1)(2k+1)}{6}$

• We want to show that $P(k+1)$ holds, that is

 $\sum_{i=1}^{k+1} (i^2) = \frac{(k+1)(k+2)(2k+3)}{6}$

• We rewrite this sum as

 $\sum_{i=1}^{k+1} (i^2) = 1^2+2^2+..+k^2+(k+1)^2 = \sum_{i=1}^{k} (i^2) + (k+1)^2$
Example B (2)

• We replace $\sum_{i=1}^{k} (i^2)$ by its value from the inductive hypothesis

\[
\sum_{i=1}^{k+1} (i^2) = \sum_{i=1}^{k} (i^2) + (k+1)^2
\]

\[
= k(k+1)(2k+1)/6 + (k+1)^2
\]

\[
= k(k+1)(2k+1)/6 + 6(k+1)^2/6
\]

\[
= (k+1)[k(2k+1)+6(k+1)]/6
\]

\[
= (k+1)[2k^2+7k+6]/6
\]

\[
= (k+1)(k+2)(2k+3)/6
\]

• Thus, we established that $P(k) \rightarrow P(k+1)$

• Thus, by the principle of mathematical induction we have

\[
\forall n \geq 1, \sum_{i=1}^{n} (i^2) = n(n+1)(2n+1)/6
\]
Example C (1)

• Prove that for any integer n≥1, $2^{2n}-1$ is divisible by 3
• Define P(n) to be the statement $3 \mid (2^{2n}-1)$
• We note that for the basis case n=1 we do have P(1)
 \[2^{2\cdot1}-1 = 3 \text{ is divisible by 3} \]
• Next we assume that P(k) holds. That is, there exists some integer u such that
 \[2^{2k}-1 = 3u \]
• We must prove that P(k+1) holds. That is, $2^{2(k+1)}-1$ is divisible by 3
Example C (2)

• Note that: $2^{2(k+1)} - 1 = 2^2 2^{2k} - 1 = 4 \cdot 2^{2k} - 1$

• The inductive hypothesis: $2^{2k} - 1 = 3u \Rightarrow 2^{2k} = 3u + 1$

• Thus: $2^{2(k+1)} - 1 = 4 \cdot 2^{2k} - 1 = 4(3u+1) - 1$

 = 12u + 4 - 1

 = 12u + 3

 = 3(4u+1), a multiple of 3

• We conclude, by the principle of mathematical induction, for any integer $n \geq 1$, $2^{2n} - 1$ is divisible by 3
Example D

• Prove that $n! > 2^n$ for all $n \geq 4$
• The basis case holds for $n=4$ because $4! = 24 > 2^4 = 16$
• We assume that $k! > 2^k$ for some integer $k \geq 4$ (which is our inductive hypothesis)
• We must prove the $P(k+1)$ holds

$$ (k+1)! = k! (k+1) > 2^k (k+1) $$

• Because $k \geq 4$, $k+1 \geq 5 > 2$, thus

$$ (k+1)! > 2^k (k+1) > 2^k \cdot 2 = 2^{k+1} $$

• Thus by the principal of mathematical induction, we have $n! > 2^n$ for all $n \geq 4$
Example E: Summation

- Show that $\sum_{i=1}^{n} (i^3) = (\sum_{i=1}^{n} i)^2$ for all $n \geq 1$
- The basis case is trivial: for $n = 1$, $1^3 = 1^2$
- The inductive hypothesis assumes that for some $n \geq 1$ we have $\sum_{i=1}^{k} (i^3) = (\sum_{i=1}^{k} i)^2$
- We now consider the summation for $(k+1)$: $\sum_{i=1}^{k+1} (i^3)$
 $= (\sum_{i=1}^{k} i)^2 + (k+1)^3 = (k(k+1)/2)^2 + (k+1)^3$
 $= (k^2(k+1)^2 + 4(k+1)^3)/2^2 = (k+1)^2(k^2 + 4(k+1))/2^2$
 $= (k+1)^2(k^2 + 4k + 4)/2^2 = (k+1)^2(k+2)^2/2^2$
 $= ((k+1)(k+2)/2)^2$
- Thus, by the PMI, the equality holds
Example F: Derivatives

- Show that for all $n \geq 1$ and $f(x) = x^n$, we have $f'(x) = nx^{n-1}$
- Verifying the basis case for $n=1$:

 $f'(x) = \lim_{h \to 0} \frac{(f(x_0+h)-f(x_0))}{h}$

 $= \lim_{h \to 0} \frac{((x_0+h)^1-(x_0^1))}{h} = 1 = 1 \cdot x^0$

- Now, assume that the inductive hypothesis holds for some k, $f(x) = x^k$, we have $f'(x) = kx^{k-1}$

- Now, consider $f_2(x) = x^{k+1} = x^k \cdot x$

- Using the product rule: $f'_2(x) = (x^k)' \cdot x + (x^k) \cdot x'$

- Thus, $f'_2(x) = kx^{k-1} \cdot x + x^k \cdot 1 = kx^k + x^k = (k+1)x^k$
The **Bad** Example: Example G

- Consider the proof for: All of you will receive the same grade
- Let \(P(n) \) be the statement: “Every set of \(n \) students will receive the same grade”
- Clearly, \(P(1) \) is true. So the basis case holds
- Now assume \(P(k) \) holds, the inductive hypothesis
- Given a group of \(k \) students, apply \(P(k) \) to \(\{s_1, s_2, \ldots, s_k\} \)
- Now, separately apply the inductive hypothesis to the subset \(\{s_2, s_3, \ldots, s_{k+1}\} \)
- Combining these two facts, we get \(\{s_1, s_2, \ldots, s_{k+1}\} \). Thus, \(P(k+1) \) holds.
- Hence, \(P(n) \) is true for all students
Example G: Where is the Error?

• The mistake is not the basis case: $P(1)$ is true
• Also, it is the case that, say, $P(73) \Rightarrow P(74)$
• So, this is cannot be the mistake
• The error is in $P(1) \Rightarrow P(2)$, which cannot hold
• We cannot combine the two inductive hypotheses to get $P(2)$
Outline

• Motivation

• What is induction?
 – Viewed as: the Well-Ordering Principle, Universal Generalization
 – Formal Statement
 – 6 Examples

• **Strong Induction**
 – Definition
 – Examples: decomposition into product of primes, gcd
Strong Induction

• **Theorem**: Principle of Mathematical Induction (Strong Form)

Given a statement P concerning an integer n, suppose

1. P is true for some particular integer n_0, $P(n_0) = 1$
2. If $k \geq n_0$ is any integer and P is true for all integers m in the range $n_0 \leq m < k$, then it is true also for k

Then, P is true for all integers $n \geq n_0$, i.e.

$$\forall \ n \geq n_0 \ P(n) \ holds$$
MPI and its Strong Form

• Despite the name, the strong form of PMI is not a stronger proof technique than PMI

• In fact, we have the following Lemma

• **Lemma**: The following are equivalent
 – The Well Ordering Principle
 – The Principle of Mathematical Induction
 – The Principle of Mathematical Induction, Strong Form
Strong Form: Example A (1)

- **Fundamental Theorem of Arithmetic** (page 211): For any integer \(n \geq 2 \) can be written uniquely as
 - A prime or
 - As the product of primes

- Prove using the strong form of induction to

- **Definition** (page 210)
 - **Prime**: A positive integer \(p \) greater than 1 is called prime iff the only positive factors of \(p \) are 1 and \(p \).
 - **Composite**: A positive integer that is greater than 1 and is not prime is called composite

- According to the definition, 1 is **not** a prime
Strong Form: Example A (2)

1. Let \(P(n) \) be the statement: “\(n \) is a prime or can be written uniquely as a product of primes.”

2. The basis case holds: \(P(2) = 2 \) and 2 is a prime.
Strong Form: Example A (3)

3. We make our inductive hypothesis. Here we assume that the predicate \(P \) holds for all integers less than some integer \(k \geq 2 \), i.e., we assume that:

\[
P(2) \land P(3) \land P(4) \land \ldots \land P(k) \text{ is true}
\]

4. We want to show that this implies that \(P(k+1) \) holds. We consider two cases:

 • \(k+1 \) is prime, then \(P(k+1) \) holds. We are done.

 • \(k+1 \) is a composite.

 \(k+1 \) has two factors \(u,v \), \(2 \leq u,v < k+1 \) such that \(k+1 = u \cdot v \)

 By the inductive hypothesis \(u = \prod_{i} p_i \) \(\land \) \(v = \prod_{j} p_j \), and \(p_i,p_j \) prime

 Thus, \(k+1 = \prod_{i} p_i \cdot \prod_{j} p_j \)

 So, by the strong form of \(\text{PMI} \), \(P(k+1) \) holds

QED
Notation:

- \(\gcd(a, b) \): the greatest common divisor of \(a \) and \(b \)

 - Example: \(\gcd(27, 15) = 3, \gcd(35, 28) = 7 \)

- \(\gcd(a, b) = 1 \iff a, b \) are mutually prime

 - Example: \(\gcd(15, 14) = 1, \gcd(35, 18) = 1 \)

Lemma: If \(a, b \in \mathbb{N} \) are such that \(\gcd(a, b) = 1 \) then there are integers \(s, t \) such that

\[
\gcd(a, b) = 1 = sa + tb
\]

Question: Prove the above lemma using the strong form of induction
Background Knowledge

- Prove that: \(\gcd(a, b) = \gcd(a, b-a) \)
- Proof: Assume \(\gcd(a, b) = k \) and \(\gcd(a, b-a) = k' \)
 - \(\gcd(a, b) = k \Rightarrow k \) divides \(a \) and \(b \)
 - \(k \) divides \(a \) and \((b-a) \) \(\Rightarrow k \) divides \(k' \)
 - \(\gcd(a, b-a) = k' \Rightarrow k' \) divides \(a \) and \(b-a \)
 - \(k' \) divides \(a \) and \(a+(b-a)=b \) \(\Rightarrow k' \) divides \(k \)
 - \((k \) divides \(k' \)) and \((k' \) divides \(k \)) \(\Rightarrow k = k' \)
 - \(\Rightarrow \gcd(a, b) = \gcd(a, b-a) \)
(Lame) Alternative Proof

• Prove that $\gcd(a,b)=1 \Rightarrow \gcd(a,b-a)=1$
• We prove the contrapositive
 – Assume $\gcd(a,b-a) \neq 1 \Rightarrow \exists k \in \mathbb{Z}, k \neq 1$ k divides a and $b-a$ $\Rightarrow \exists m,n \in \mathbb{Z}$ $a=km$ and $b-a=kn$
 $\Rightarrow a+(b-a)=k(m+n) \Rightarrow b=k(m+n) \Rightarrow k$ divides b
 – $k \neq 1$ divides a and divides $b \Rightarrow \gcd(a,b) \neq 1$
• But, don’t prove a special case when you have the more general one (see previous slide..)
Strong Form: Example B (2)

1. Let $P(n)$ be the statement

 $$(a, b \in \mathbb{N}) \land (\gcd(a, b) = 1) \land (a + b = n) \Rightarrow \exists s, t \in \mathbb{Z}, sa + tb = 1$$

2. Our basis case is when $n=2$ because $a=b=1$.
 For $s=1$, $t=0$, the statement $P(2)$ is satisfied ($sa + tb = 1.1 + 1.0 = 1$)

3. We form the inductive hypothesis $P(k)$:
 • For $k \in \mathbb{N}$, $k \geq 2$
 • For all i, $2 \leq i \leq k$ $P(a+b=i)$ holds
 • For $a, b \in \mathbb{N}$, $(\gcd(a, b) = 1) \land (a + b = i) \exists s, t \in \mathbb{Z}, sa + tb = 1$

4. Given the inductive hypothesis, we prove $P(a+b = k+1)$
 We consider three cases: $a=b$, $a<b$, $a>b$
Strong Form: Example B (3)

Case 1: $a=b$

- In this case: $\gcd(a, b) = \gcd(a, a)$ \(\text{Because } a=b\)

 \[= a\] \(\text{By definition}\)

 \[= 1\] \(\text{See assumption}\)

- $\gcd(a, b)=1 \Rightarrow a=b=1$

 \[\Rightarrow \text{We have the basis case,}\]

 \[P(a+b)=P(2), \text{ which holds}\]
Strong Form: Example B (4)

Case 2: \(a < b\)

- \(b > a \implies b - a > 0\). So \(\gcd(a, b) = \gcd(a, b-a) = 1\)
- Further: \(2 \leq a + (b-a) = (a+b) - a = (k+1) - a \leq k \implies a + (b-a) \leq k\)
- Applying the inductive hypothesis \(P(a+(b-a))\)
 \((a, (b-a) \in \mathbb{N}) \land (\gcd(a, b-a) = 1) \land (a+(b-a) = b) \implies \exists s_0, t_0 \in \mathbb{Z}, s_0 a + t_0 (b-a) = 1\)
- Thus, \(\exists s_0, t_0 \in \mathbb{Z}\) such that \((s_0-t_0)a + t_0 b = 1\)
- So, for \(s, t \in \mathbb{Z}\) where \(s = s_0 - t_0\), \(t = t_0\) we have \(sa + tb = 1\)
- Thus, \(P(k+1)\) is established for this case
Strong Form: Example B (5)

Case 2: a>b

- This case is completely symmetric to case 2
- We use a-b instead of a-b

- Because the three cases handle every possibility, we have established that P(k+1) holds
- Thus, by the PMI strong form, the Lemma holds. **QED**
Template

• In order to prove by induction
 • Some mathematical theorem, or
 • \(\forall n \geq n_0 \ P(n) \)

• Follow the template
 1. State a propositional predicate
 \(P(n) \): some statement involving \(n \)
 2. Form and verify the basis case (basis step)
 3. Form the inductive hypothesis (assume \(P(k) \))
 4. Prove the inductive step (prove \(P(k+1) \))
Summary

• Motivation

• What is induction?
 – Viewed as: the Well-Ordering Principle, Universal Generalization
 – Formal Statement
 – 6 Examples

• Strong Induction
 – Definition
 – Examples: decomposition into product of primes, gcd