6002 ‘9 Lienuep

Litenoyp "X'g

OFf sS9j0U S,1030NI}SUT

-

Title: Solving Problems by Searching
AIMA: Chapter 3 (Sections 3.4, 3.5, and 3.6)

Introduction to Artificial Intelligence

CSCE 476-876, Spring 2009
URL: www.cse.unl.edu/ " choueiry/S09-476-876

Berthe Y. Choueiry (Shu-we-ri)
choueiry@cse.unl.edu, (402)472-5444

6002 ‘9 Lienuep

Litenoyp "X'g

OFf sS9j0U S,1030NI}SUT

-

function GENERAL-SEARCH(problem, strategy) returnsasolution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidatesfor expansionthen return failure
choose aleaf node for expansion according to strategy
If the node containsa goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

Essence of search: which node to expand first?

— search strategy

A strategy is defined by picking the order of node expansion

N

6002 ‘9 Lienuep

Litenoyp "X'g

OFf sS9j0U S,1030NI}SUT

é N

Types of Search
Uninformed: use only information available in problem definition

Heuristic: exploits some knowledge of the domain

Uninformed search strategies
. Breadth-first search
Uniform-cost search
. Depth-first search
Depth-limited search
Iterative deepening depth-first search

. Bidirectional search

/m.cnrl;oo.w»—x

6002 ‘9 Lienuep

Litenoyp "X'g

OFf sS9j0U S,1030NI}SUT

-

Search strategies

Criteria for evaluating search:
1. Completeness: does it always find a solution if one exists?
2. Time complexity: number of nodes generated/expanded
3. Space complexity: maximum number of nodes in memory

4. Optimality: does it always find a least-cost solution?

Time/space complexity measured in terms of:
e b: maximum branching factor of the search tree
e d: depth of the least-cost solution

e m: maximum depth of the search space (may be co)

N

6002 ‘9 Lienuep

Litenoyp "X°g

OFf sS9j0U S,1030NI}SUT

4 N

Breadth-first search (I)

— Expand root node

— Expand all children of root

— Expand each child of root

— Expand successors of each child of root, etc.

N

— Expands nodes at depth d before nodes at depth d + 1
— Systematically considers all paths length 1, then length 2, etc.

—— Implement: put successors at end of queue.. FIFO

N /

©
®
(W)
Q)
©
A

(W)
©

N ©

-~

)

=

D (@)

0] A

~

n

N

a

-~

T @

gA

N

an

_ /

B.Y. Choueiry 6 Instructor’s notes #6
January 26, 2009

6002 ‘9 Lienuep

Litenoyp "X'g

OFf sS9j0U S,1030NI}SUT

/Breadth-ﬁrst search (3)

—— One solution?

— Many solutions? Finds shallowest goal first

1. Complete? Yes, if b is finite

2. Optimal? provided cost increases monotonically with depth,

not in general (e.g., actions have same cost)
3. Time? 1 +b+b%+ b3+ ...+ b +b(b? — 1) = O(b?T1)

branching factor b

O (bd—i—l)
depth d

4. Space? same, O(b?1), keeps every node in memory, big

problem

\ can easily generate nodes at 10MB /sec so 24hrs = 860GB

/

6002 ‘9 Lienuep

Litenoyp "X°g

OFf sS9j0U S,1030NI}SUT

‘u

— Breadth-first does not consider path cost g(x)

niform-cost search (I)

—— Uniform-cost expands first lowest-cost node on the fringe

— Implement: sort queue in decreasing cost order

When g(x) = Depth(z) — Breadth-first = Uniform-cost

15

\ @ (b)

6002 ‘9 Lienuep

Lienoyp "X'g

OFf sS9j0U S,1030NI}SUT

-

1.

Uniform-cost search (2)

Complete?
Yes, if cost > ¢

. Optimal?

If the cost is a monotonically increasing function
When cost is added up along path, an operator’s cost 7

. Time?

of nodes with ¢ < cost of optimal solution, O(bl¢" /€1
where C™ is the cost of the optimal solution

. Space?

of nodes with ¢ < cost of optimal solution, O(b/¢" /1)

/

6002 ‘9 Lienuep

Litenoyp "X°g

0T

OFf sS9j0U S,1030NI}SUT

G)ept h-first search (I)

— Expands nodes at deepest level in tree
— When dead-end, goes back to shallower levels

— Implement: put successors at front of queue.. LIFO

S
)

— Little memory: path and unexpanded nodes

Qor b: branching factor, m: maximum depth, space ?

/

4
SOt

/

B.Y. Choueiry H_.H_. Instructor’s notes #6
January 26, 2009

/Depth-ﬁrst search (2)

6002 ‘9 Lienuep

Litenoyp "X°g

Gl

OFf sS9j0U S,1030NI}SUT

G)epth-ﬁrst search (3)

Time complexity:
We may need to expand all paths, O(b™)

~

When there are many solutions, DFS may be quicker than BFS

When m is big, much larger than d, oo (deep, loops), .. troubles

— Major drawback of DFS: going deep where there is no solution..

Properties:

1. Complete? Not in infinite spaces, complete in finite spaces

2. Optimal?
3. Time? O(b™)

Woow..

terrible if m is much larger than d, but if solutions are dense,

may be much faster than breadth-first

\4. Space? O(bm), linear!

Woow.. /

6002 ‘9 Lienuep

Litenoyp "X°g

el

OFf sS9j0U S,1030NI}SUT

Depth-limited search (I)

— DF'S is going too deep, put a threshold on depth!
For instance, 20 cities on map for Romania, any node deeper
than 19 is cycling. Don’t expand deeper!

—— Implement: nodes at depth [have no successor

Properties:

1. Complete?

2. Optimal?

3. Time? (given [depth limit)
4. Space? (given [depth limit)

Problem: how to choose [?

6002 ‘9 Lienuep

Litenoyp "X°g

!

OFf sS9j0U S,1030NI}SUT

/Iterative-deepening search (I)

— DLS with depth =0
— DLS with depth =1
— DLS with depth = 2
— DLS with depth = 3...

Limt=0 @

Limt=1 @ A

L

b Combines benefits of DFS and BFS

©
e,
@
© ® B ®
— ® ®
(@
— Q e
-~
S
M © © m ©
Qe : -
0
a0 0 ® Q mwﬂ
k=
S
<) 2 2
Sol o | o ﬁ ®
b
T ° I h i
o E E
2
~
©
e
b
~
\ /

B.Y. Choueiry H_.U Instructor’s notes #6
January 26, 2009

6002 ‘9 Lienuep

Litenoyp "X'g

91

OFf sS9j0U S,1030NI}SUT

-

Iterative-deepening search (3)

—— combines benefits of DFS and BFS

Properties:
1. Time? (d+ 1).b° 4+ (d).b+ (d —1).b* + ...+ 1.0% = O(b?)
2. Space? O(bd), like DFS
3. Complete? like BFS
4. Optimal? like BFS (if step cost = 1)

6002 ‘9 Lienuep

Litenoyp "X'g

L1

OFf sS9j0U S,1030NI}SUT

4 N

Iterative-deepening search (4)

— Some nodes are expanded several times, wasteful?
N(BFS) = b+b*+ 5%+ ...+ b+ (b —d)
N(IDS) = (d)b+ (d — 1)b% + ...+ (1)b?

Numerical comparison for b = 10 and d = 5:

N(IDS) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450
N(BFS) = 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 =
1,111,100

—— IDS is preferred when search space is large and depth unknown

N /

6002 ‘9 Lienuep

Litenoyp "X'g

ST

OFf sS9j0U S,1030NI}SUT

-

Bidirectional search (I)

— Given initial state and the goal state, start search from both

ends and meet in the middle

(e 42
s T

— Assume same b branching factor, 3 solution at depth d, time:

O(2b%2) = O(b¥?)

b=10,d = 6, DFS= 1,111,111 nodes, BDS=2,222 nodes!

6002 ‘9 Lienuep

Litenoyp "X°g

61

OFf sS9j0U S,1030NI}SUT

-

Bidirectional search (2)

In practice —(

e Need to define predecessor operators to search backwards
If operator are invertible, no problem

e What if d many goals (set state)?
do as for multiple-state search

e need to check the 2 fringes to see how they match
need to check whether any node in one space appears in the
other space (use hashing)

need to keep all nodes in a half in memory O(b%/?)

e What kind of search in each half space?

-

6002 ‘9 Lienuep

Litenoyp "X'g

0¢

OFf sS9j0U S,1030NI}SUT

-

~

Summary
Criterion Breadth- Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening
Complete? Yes™ Yes™ No Yes, if | > d Yes
Time pitt ple /e b b’ b
Space pit! A bm bl bd
Optimal? Yes™ Yes™ No No Yes

b branching factor

d solution depth

m maximum depth of tree
[depth limit

N

6002 ‘9 Lienuep

14 Litenoyp "X°g

OFf sS9j0U S,1030NI}SUT

-

Example: <

Loops: Avoid repeated states (I)
Avoid expanding states that have already been visited

Valid for both infinite and finite trees

[n maximum depth

m -+ 1 states

2™ possible branches (paths)

\

6002 ‘9 Lienuep

Litenoyp "X°g

GG

OFf sS9j0U S,1030NI}SUT

ﬁoops: (2) \

_ , Open list: Fringe
Keep nodes in two lists:
Closed list: Leaf and expansed nodes
Discard a current node that matches a node in the closed list

Tree-Search — Graph-Search

Issues:

1. Implementation: hash table, access is constant time
Trade-off cost of storing+checking vs. cost of searching
2. Losing optimality
when new path is cheaper/shorter of the one stored

\3. DFS and IDS now require exponential storage /

6002 ‘9 Lienuep

Litenoyp "X°g

e

OFf sS9j0U S,1030NI}SUT

Summary
Path: sequence of actions leading from one state to another

Partial solution: a path from an initial state to another state

Search: develop a sets of partial solutions
e Search tree & its components (node, root, leaves, fringe)
e Data structure for a search node
e Search space vs. state space
e Node expansion, queue order
e Search types: uninformed vs. heuristic
e 6 uninformed search strategies

e 4 criteria for evaluating & comparing search strategies

6002 ‘9 Lienuep

Litenoyp "X'g

e

OFf sS9j0U S,1030NI}SUT

-

Searching with partial information (1)

So far, we assumed:
e Environment fully observable
e Environment deterministic
e Agent knows effects of actions
Thus, agent
e always knows where it is
e can compute state where it will be after a sequence of actions

What happens when knowledge about states and actions is

incomplete?

N

6002 ‘9 Lienuep

Litenoyp "X'g

Gc

OFf sS9j0U S,1030NI}SUT

-

S

earching with partial information (2)

Incompleteness yields 3 types of problems:

N

e Sensorless (conformant) problems
e Contingency problems

e Exploration problems

6002 ‘9 Lienuep

Litenoyp "X'g

9¢

OFf sS9j0U S,1030NI}SUT

-

Sensorless problems (conformant)

e Environment not observable, no percepts

e Agent does not know in which exact state it is

— agent may be in one of more possible initial states

— an action may lead to one or more possible successor states

/

6002 ‘9 Lienuep

Litenoyp "X'g

LC

OFf sS9j0U S,1030NI}SUT

-

Contingency problems
e environment partially observable or actions are uncertain
e agent’s percepts provide new input after each action, a

contingency to plan for

agents

e Adverserial problems: uncertainty caused by action of other

/

6002 ‘9 Lienuep

Litenoyp "X'g

8C

OFf sS9j0U S,1030NI}SUT

-

Exploration problems

e States and actions of the environment are unknown
e Agent must act to discover them

e Extreme case of contingency problem

N

6002 ‘9 Lienuep

Litenoyp "X'g

6¢

OFf sS9j0U S,1030NI}SUT

-

Sensorless problems (I)

Vacuum cleaner: no sensors, but agent knows effects of actions

Agent may be in any state {1, 2, 3, 4, 5, 6, 7, 8}
e [Right] always ends in {2, 4, 6, 8}
e |Right, Suck| always ends in {4, 8}

N

e |Right, Suck, Left, Suck] always works, coerces the world into 7

/

6002 ‘9 Lienuep

Litenoyp "X'g

0€

OFf sS9j0U S,1030NI}SUT

-

Sensorless problems (2)

Environment not (fully) observable:
e Agent must think about sets of states,
e Agent has a belief state (set of possible states)

Environment fully observable: 1 belief state has 1 state

Solving sensorless problems: search in space of beliefs
e initial state is a belief state (all possible states)
e actions map 1 belief state into another

e belief state is union of applying action to each state in initial
belief state

e goal is reached when all states in belief state are goal states

6002 ‘9 Lienuep

1¢ Litenoyp "X'g

OFf sS9j0U S,1030NI}SUT

/Sensorless problems (2)

vacuum cleaner: 12 belief states

N

S states, 2° possible belief states

) =] || B
El ENREERNE =
S
. .
= |
L R
s -
= | -
R L L R
s = =
= R =]
In general:
8 states, 2% possible belief states

6002 ‘9 Lienuep

A4S Litenoyp "X°g

OFf sS9j0U S,1030NI}SUT

-

Sensorless problems (3)

So far assumed deterministic environment

Approach /results hold for nondeterministic environment

Example: Murphy’s law, Suck sometimes deposits dirt on carpet
but only if there is no dirt there already

e [Suck] applied to State 4 leads to {2, 4}
o [Suck] applied to {1, 2, 3,4, 5,6, 7, 8} leads to ...

e Problem is unsolvable (Exercise 3.18)!!
Agent cannot tell whether state is dirty and cannot predict
whether Suck is going to make it dirty or clean

-

6002 ‘9 Lienuep

Litenoyp "X°g

€

OFf sS9j0U S,1030NI}SUT

-

Contingency problems (I)
Environment partially observable or actions are uncertain

When agent can get some information:
e about environment
e from sensors

e after acting

Solution to a contingency problem is not a path, but a tree
— branches are selected depending on percepts

-

6002 ‘9 Lienuep

Litenoyp "X'g

Ve

OFf sS9j0U S,1030NI}SUT

/Contingency problems (2)

Now,

e Action
e Action

e Action

Example: vacuum cleaner
e has ‘local dirt’ sensor, no ‘remote dirt’ sensor
e has location sensor

e Murphy’s law

e Agent perceives [L, Dirty], thinks in state {1, 3}

Suck] leads to {5, 7}
Suck, Right| leads to {6, 8}

Suck, Right, Suck] leads to {8, 6}

Plan can succeed (8), or fail (6)
Thus, action [Suck, Right,if|R, Dirty|thenSuck] leads to {8, 6}

Qolution i1s a tree

/

6002 ‘9 Lienuep

Litenoyp "X'g

GE

OFf sS9j0U S,1030NI}SUT

-

Contingency problems (3)

Example: vacuum cleaner
e has ‘local dirt’ sensor and ‘remote dirt’ sensor
e has location sensor (fully observable)

e Murphy’s law

Solution is a sequence of actions

Agent can proceed...

N

6002 ‘9 Lienuep

Litenoyp "X°g

9¢

OFf sS9j0U S,1030NI}SUT

-

Contingency problems (4)

In general, agent
e acts before having a guaranteed plan (solution is a tree)

e needs to consider every possibility that might arise

— may be an overkill

It is (sometimes) necessary to start acting,

and deal with contingencies as they arise
e — Interleave Search and Execution

e — Useful for game playing and exploration problems

-

