Introduction to NP-Complete Problems

Shant Karakashian Rahul Purandare

February 15, 2008

Definitions
 The 4-Step Proof
 Example 1: Vertex Cover
 Example 2: Jogger

$\mathcal{P}, \mathcal{N} \mathcal{P}$ and $\mathcal{N} \mathcal{P}$-Complete

Given a problem, it belongs to $\mathcal{P}, \mathcal{N} \mathcal{P}$ or $\mathcal{N} \mathcal{P}$-Complete classes, if:

- $\mathcal{N P}$: verifiable in polynomial time.
- \mathcal{P} : decidable in polynomial time.
- $\mathcal{N P}$-Complete: all problems in $\mathcal{N P}$ can be reduced to it in polynomial time.

The 4-Step Proof

Given a problem X, prove it is in $\mathcal{N} \mathcal{P}$-Complete.

1. Prove X is in $\mathcal{N} \mathcal{P}$.
2. Select problem Y that is know to be in $\mathcal{N P}$-Complete.
3. Define a polynomial time reduction from Y to X.
4. Prove that given an instance of Y, Y has a solution iff X has a solution.

Reduction

Vertex Cover

- A vertex cover of a graph $G=(V, E)$ is a $V_{C} \subseteq V$ such that every $(a, b) \in E$ is incident to at least a $u \in V_{C}$.

\longrightarrow Vertices in V_{C} 'cover' all the edges of G.
- The Vertex Cover (VC) decision problem:

Does G have a vertex cover of size k ?

Independent Set

- An independent set of a graph $G=(V, E)$ is a $V_{I} \subseteq V$ such that no two vertices in V_{l} share an edge.

$\longrightarrow u, v \in V_{l}$ cannot be neighbors.
- The Independent Set (IS) decision problem:

Does G have an independent set of size k ?

Prove Vertex Cover is $\mathcal{N} \mathcal{P}$-complete

Given that the Independent Set (IS) decision problem is $\mathcal{N} \mathcal{P}$-complete, prove that Vertex Cover (VC) is $\mathcal{N} \mathcal{P}$-complete. Solution:

1. Prove Vertex Cover is in $\mathcal{N} \mathcal{P}$.

- Given V_{C}, vertex cover of $G=(V, E),\left|V_{C}\right|=k$
- We can check in $O(|E|+|V|)$ that V_{C} is a vertex cover for G. How?
- For each vertex $\in V_{C}$, remove all incident edges.
- Check if all edges were removed from G.
- Thus, Vertex Cover $\in \mathcal{N P}$

Prove Vertex Cover is $\mathcal{N} \mathcal{P}$-complete (2)

2. Select a known $\mathcal{N} \mathcal{P}$-complete problem.

- Independent Set (IS) is a known $\mathcal{N} \mathcal{P}$-complete problem.
- Use IS to prove that VC is $\mathcal{N} \mathcal{P}$-complete.

Prove Vertex Cover is $\mathcal{N} \mathcal{P}$-complete (3)

3. Define a polynomial-time reduction from $I S$ to VC :

- Given a general instance of IS: $G^{\prime}=\left(V^{\prime}, E^{\prime}\right), k^{\prime}$
- Construct a specific instance of $\mathrm{VC}: G=(V, E), k$
- $V=V^{\prime}$
- $E=E^{\prime}$
- $\left(G=G^{\prime}\right)$
- $k=\left|V^{\prime}\right|-k^{\prime}$
- This transformation is polynomial:
- Constant time to construct $G=(V, E)$
- $O(|V|)$ time to count the number of vertices
- Prove that there is a $V_{l}\left(\left|V_{l}\right|=k^{\prime}\right)$ for G^{\prime} iff there is an V_{C} $\left(\left|V_{C}\right|=k\right)$ for G.

Prove Vertex Cover is $\mathcal{N} \mathcal{P}$-complete (4)

Prove G^{\prime} has an independent set V_{l} of size k^{\prime} iff VC has a vertex cover V_{C} of size k.

- Consider two sets I and J s.t. $I \cap J=\emptyset$ and $I \cup J=V=V^{\prime}$
- Given any edge (u, v), one of the following four cases holds:

1. $u, v \in I$
2. $u \in I$ and $v \in J$
3. $u \in J$ and $v \in I$
4. $u, v \in J$

- Assume that I is an independent set of G^{\prime} then:
- Case 1 cannot be; (vertices in I cannot be adjacent)
- In cases 2 and 3, (u, v) has exactly one endpoint in J.
- In case $4,(u, v)$ has both endpoints in J.
- In cases 2, 3 and 4, (u, v) has at least one endpoint J.
- Thus, vertices in J cover all edges of G^{\prime}.
- Also: $|I|=|V|-|J|$ since $I \cap J=\emptyset$ and $I \cup J=V=V^{\prime}$
- Thus, if I is an independent set of G^{\prime}, then J is a vertex cover of $G^{\prime}(=G)$.
Similarly, we can prove that if J is a vertex cover for G^{\prime}, then I is an independent set for G^{\prime}.

Prove Vertex Cover is $\mathcal{N} \mathcal{P}$-complete (5)

Jogger Problem

Given a weighted, undirected graph G with:

- loops, multiple edges, and only positive weights,
- a special node v called home,
- and given an integer $i \geq 0$.

Is there a route for a jogger J that:

- starts from home,
- travels a distance i, and
- returns home
- without repeating an edge (nodes can be repeated)?

Jogger is $\mathcal{N} \mathcal{P}$-complete

1. Jogger is in $\mathcal{N P}$: Given a path P, we can check in $O(|P|)$ whether or not the sum of all edge weights is equal to i.
2. Consider the Subset Sum (SS) problem ${ }^{1}$, which is a known $\mathcal{N} \mathcal{P}$-complete problem.
Given a set S of positive integers, is there a subset $S^{\prime} \subseteq S$ such that sum of the elements of S^{\prime} is t.
Example: $S=\{1,3,4,5,7,8\}$, find $S^{\prime} \subseteq S$ such that sum of the elements in S^{\prime} is 15 .
3. Reduce Subset Sum to the Jogger.

Jogger is $\mathcal{N} \mathcal{P}$-complete

- Given an instance of $S S: S=\left\{a_{1}, a_{2}, \ldots a_{n}\right\}$, construct a graph G as follows:
- G has a unique node, v, which is the home.
- For each $a_{i} \in S$, add a self-loop to v of weight a_{i}.
- Let i (of the Jogger) $=t$ (of the Sum Set).
- This construction is obviously linear in the number of elements in S.

Jogger is $\mathcal{N P}$-complete (2)

4. SS has a solution iff Jogger has a solution.

- G contains a path starting from home, never repeating an edge, and returning back home with a total distance exactly i iff S has a subset S^{\prime} with sum of elements of S^{\prime} equal to t.
- If $S^{\prime} \subseteq S$ is a solution to $S S$, then the Jogger has a path of length $i=t$ by taking the edges (loops) corresponding to the elements in S^{\prime}.
- If there a path P is a solution to Jogger, then the subset of S with elements corresponding to the edges in P is a subset with sum $i=t$ and thus is a solution to SS.

