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All-di�s onstraint
Constraint: CVariables: XC = {x1, x2, . . . , x6}
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Context: �nite CSPsGoal: e�ieny of ar onsistenyFous: All-di� onstraints

Result: e�ient algorithm 





Spae : O(pd)Time : O(p2d2)

p: #vars, d: max domain sizeAppliation: used in RESYN for subgraph isomorphism(plan synthesis in organi hemistry)
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Contributions

• An algorithm to establish ar onsisteny in an all-di�onstraint

→ e�ient

→ powerful pruning
• An algorithm to propagate deletions among several all-di�onstraints
• Illustration on the zebra problem

B.Y.Choueiry
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Why?
• GAC4 handles n-ary onstraints
→ good pruning power
→ quite expensive:depends on size and numberof all admissible tuples = d!

(d−p)!

p: #vars, d: max domain size
• Replae n-ary by a set of binary onstraints,then use AC-3 or AC-4
→ heap
→ bad pruning
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Example
• n-ary onstraint

{a, b, c }{ a, b }

{a, b}
x1

x2 x3GAC4: rules out a, b for x3

• Set of binary onstraints
{a, b, c }{ a, b }

{a, b}
x1

x2 x3AC-3/4 ends with no �ltering
B.Y. Choueiry 6 Marh 14, 2011
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NotationsCSP: P = (X ,D, C)

C ∈ C de�ned on XC = {xi1 , xi2 , . . . , xij
} ⊆ X

p: arity of C, p = |XC |

d: max |Dxi
|

• A value ai for xi is onsistent for C, if ∃ values for other allvariables in XC suh that these values and ai simultaneouslysatisfy C

• A onstraint C is onsistent, if all values for all variables XC areonsistent for C

• A CSP is ar-onsistent, if all onstraints (whatever their arity)are onsistent
• A CSP is di�-ar-onsistent i� all its all-di�s onstraints arear-onsistent
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Value GraphGiven C, an all-di� onstraint,the value Graph of C is a bipartite graphGV(C) = (XC , D(XC), E)Verties: XC = {xi1 , xi2 , . . . , xij
}Verties: D(XC) = ∪x∈XC

(Dx)Edges: (xi, a) i� a ∈ Dx
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Spae omplexity?Draw GV of the 3-node oloring example
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De�nitions: mathing
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Mathing: a subset of edges in G with no vertex in ommonMax. mathing biggest possibleMathing overs a set X: every vertex in X is an endpoint foran edge in mathing- Left: M that overs XC is a max mathing- If every edge in GV(C) is in a mathing that overs XC , C isonsistent
B.Y.Choueiry
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Theorem 1CSP: P = (X ,D, C) is di�-ar-onsistent i�for every all-di� C ∈ Cevery edge GV(C) belongs to a mathingthat overs XC in GV(C)

Task:Repeat for eah all-di� onstraint,- Build G (≡ GV) of all-di� onstraint C- Remove edges that do not belong to any mathing overing XC

B.Y.Choueiry
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Algorithm 1:- Compute one M(G), maximal mathing in G- If M(G) does not over XC , then stop- Using M(G), remove edges that do not belong...

−→ Hoproft & Karp: E�ient proedurefor omputing a mathing overing XC

−→ Or, maximal �ow in bipartite graph (less e�ient)

B.Y.Choueiry
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Our problem beomesGiven:- an all-di� onstraint C- its value graph G = (X, Y, E)- one maximum overing M(G)

Remove edges that belong to no mathing overing X

B.Y.Choueiry
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De�nitions
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Given a mathing M :mathing edge: an edge in Mfree edge: an edge not in Mmathed vertex: inident to a mathing edgefree vertex: otherwisealternating path (yle): a path (yle) whoseedges are alternatively mathing and freelength of a path: number of edges in pathvital edge: belongs to every maximum mathing
B.Y. Choueiry 13 Marh 14, 2011
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Questions
a

b

cx3

x2

x1

Indiate:- mathing edges- free edges- mathed verties- a free vertex- an alternating path, length?- an alternating yle, length?- a vital edge
B.Y. Choueiry 14 Marh 14, 2011
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Property 1 (Berge)An edge belongs to some of but not all maximum mathings, i� foran arbitrary maximum mathing M , it belongs to either:- an even alternating yle, or- an even alternating path that begins at a free vertex
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Thus:

The edges to remove should not be in:- all mathings (vital)- an even alternating path starting at a free vertex- an even alternating yle
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Given:- G = (X, Y, E)- a mathing M(G) overing X- Build GO, by orienting the edges
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- every direted yle in GO orresponds to an even alternatingyle of G, and onversely- every direted simple path in GO, starting at a free vertexorresponds to an even alternating path of G starting at a freevertex, an onversely

B.Y.Choueiry
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Task:Given G, and M(G), remove edges that do notbelong to any mathing overing XC

Algorithm 2
• Build GO

• Mark all edges of GO as unused
• Identify all direted edges that belong to adireted simple path starting at a free vertexby a breadth-�rst searh, mark them as used
• Compute strongly onneted omponents in

GO. Mark �used� any direted edge betweentwo verties in the same strongly onnetedomponent, as any suh edge belongs to adireted yle and onversely
• All remaining unused edges,if they are in M(G), mark them as vitalelse put them in RE and remove them from G

B.Y. Choueiry 18 Marh 14, 2011
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Algorithm 2

B.Y. Choueiry 19 Marh 14, 2011
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x3

x2

x1 a

b

cAlgorithm 2
• ...
• Identify all edges starting at a free vertex by abreadth-�rst searh, mark them as used
• Compute strongly onneted omponents in GO.Mark �used� any direted edge between twoverties in the same strongly onnetedomponent, as any suh edge belongs to adireted yle and onversely
• All remaining unused edges,if they are in M(G), mark them as vitalelse put them in RE and remove them from G
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Algorithm 2
• ...
• Identify all edges starting at a free vertex by abreadth-�rst searh, mark them as used
• Compute strongly onneted omponents in GO.Mark �used� any direted edge between twoverties in the same strongly onnetedomponent, as any suh edge belongs to adireted yle and onversely
• All remaining unused edges,if they are in M(G), mark them as vitalelse put them in RE and remove them from GB.Y. Choueiry 21 Marh 14, 2011
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So far..Given C, remove edges that are not onsistent for C

.. but,A variable x may be in more than one all-di� onstraints,i.e. x may be in XCi

and XCj

, with Ci and Cj two all-di�onstraintsHow to propagate the e�et of �ltering of Ci on Cj?

→ start from srath?
→ propagate deletions more intelligentlyuse the fat that before deletion due to Cj ,a mathing overing XCi

was known in GV(Ci)

B.Y.Choueiry
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Assume we have Ci, Cj , and Ck involving a given variable

Compute 





RE(Ci), RE(Cj), RE(Ck),G=GV(Ci), M(G), et.IdeaConsider CiFirst remove from G deletions due to Cj , CkSeond, try to extend the remaining edges in M(G) into a mathingthat overs XCiFinally, apply Algorithm 2... iterate
B.Y.Choueiry
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Consider Ci, G = GV(Ci), M(G)Set RE ← RE(Ci)ER ← RE(Cj) ∪ RE(Ck)

B.Y. Choueiry 24 Marh 14, 2011
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Example: the Zebra problem5 houses of di�erent olors5 inhabitants, di�erent nationalities, di�erentpets, di�erent drinks, di�erent igarettesConsider the following fats:1. The Englishman lives in the red house2. The Spaniard has a dog3. Co�ee is drunk in the green house4. The Ukrainian drinks tea5. The green house is immediately to the right ofthe ivory house6. The snail owner smokes Old-Gold7. et.Query: who drinks water?who owns a zebra?
B.Y. Choueiry 25 Marh 14, 2011
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Zebra: formulation
25 variables:







































5 house-olor C1, C2, . . . , C55 nationalities N1, N2, . . . , N55 drinks B1, B2, . . . , B55 igarettes T1, T2, . . . , T55 pets A1, A2, . . . , A5

Domain of eah variable = {1, 2, 3, 4, 5}(≡ {h1, h2, h3, h4, h5})Constraints 2�15?
B.Y. Choueiry 26 Marh 14, 2011
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Formulating Constraint 1:1. Binary onstraint between any pair in eah luster: binary CSP2. Five 5-ary all-di� onstraints: non-binary CSP3. The 5-ary onstraints are replaed with their GV. Spae?

B.Y.Choueiry
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Results (I)Formulation 1 solved with AC

Formulation 2 solved with GAC-4

Formulation 3 solved with the new tehnique.Same results as 2.B.Y. Choueiry 28 Marh 14, 2011
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Results (II)
a: # of binary onstraints
p: size of a luster
c: # of lusters
d: # of values in a domain
O(ad2): omplexity of AC on binary
Formulation 1 solved with AC- number of binary onstraint added is O(cp2)- �ltering omplexity is O((a + cp2)d2)Formulation 2 solved with GAC-4- �ltering omplexity is O( d!

(d−p)!p)Formulation 3 solved with the new tehnique- ar-onsisteny is O(ad2)- all-di� �ltering is O(cp2d2)- total �ltering is O(ad2 + cp2d2)

B.Y. Choueiry 29 Marh 14, 2011
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ExtensionImproved bounds by J.-F. Puget (AAAI 99) for ordered domains(e.g., time in sheduling).

LessonWe an improve the performane of searh by:
• identifying speial strutures in the onstraint graph(e.g., tree, bionneted omponents, DAG)

• identifying speial types of onstraints(e.g., funtional, anti-funtional, monotoni, all-di�s)
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Improved ar-onsisteny Van Hentenryk et al. AIJ 92FuntionalA onstraint C is funtional with respet to a domain D i� for all
v ∈ D (respetively w ∈ D) there exists at most one w ∈ D(respetively v ∈ D) suh that C(v, w).Anti-funtionalA onstraint C is anti-funtional with respet to a domain D i�

¬C is funtional with respet to D.MonotoniA onstraint C is monotoni with respet to a domain D i� thereexists a total ordering on D suh that, for all values v and w ∈ D,

C(v, w) holds implies C(v′, w′) holds for all values v′ and w′ ∈ Dsuh that v′ ≤ v and w′ ≤ w.
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