Title: A Filtering Algorithm for Constraints of Difference in CSPs Author: J.-Ch. Régin
Proc.: AAAI 1994
Pages: 362-367

Foundations of Constraint Processing CSCE421/821, Spring 2008
www.cse.unl.edu/~choueiry/S08-421-821/

Berthe Y. Choueiry (Shu-we-ri)
Avery Hall, Room 123B
choueiry@cse.unl.edu, Tel: (402)472-5444

Images scanned from paper by Nimit Mehta

Context: finite CSPs
Goal: efficiency of arc consistency
Focus: All-diff constraints
$\omega^{\omega} \quad$ Result: efficient algorithm $\left\{\begin{array}{l}\text { Space }: \mathcal{O}(p d) \\ \text { Time }: \mathcal{O}\left(p^{2} d^{2}\right)\end{array}\right.$
p : \#vars, d : max domain size
Application: used in RESYN for subgraph isomorphism
(plan synthesis in organic chemistry)

Contributions

- An algorithm to establish arc consistency in an all-diff constraint
\rightarrow efficient
$\rightarrow \quad \rightarrow$ powerful pruning
- An algorithm to propagate deletions among several all-diff constraints
- Illustration on the zebra problem

Why?

- GAC4 handles n-ary constraints
\rightarrow good pruning power
\rightarrow quite expensive:
depends on size and number
of all admissible tuples $=\frac{d!}{(d-p)!}$ p : \#vars, d: max domain size
- Replace n-ary by a set of binary constraints, then use AC-3 or AC-4
\rightarrow cheap
\rightarrow bad pruning

Example

- n-ary constraint

GAC4: rules out a, b for x_{3}

- Set of binary constraints

AC-3/4 ends with no filtering

Notations

CSP: $\mathcal{P}=(\mathcal{X}, \mathcal{D}, \mathcal{C})$
$C \in \mathcal{C}$ defined on $X_{C}=\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{j}}\right\} \subseteq \mathcal{X}$
p : arity of $C, p=\left|X_{C}\right|$
$d: \max \left|D_{x_{i}}\right|$

- A value $\underline{a_{i}}$ for x_{i} is consistent for C, if \exists values for other all
\checkmark variables in X_{C} such that these values and a_{i} simultaneously satisfy C
- A constraint C is consistent, if all values for all variables X_{C} are consistent for C
- A CSP is arc-consistent, if all constraints (whatever their arity) are consistent

- A CSP is diff-arc-consistent iff all its all-diffs constraints are arc-consistent

Definitions: matching

\(\left.\begin{array}{lrr}\mathrm{x} 1

\mathrm{x} 2

\mathrm{x} 3\end{array}\right) \quad\)| 1 |
| ---: |
| 2 |
| |

Matching: a subset of edges in G with no vertex in common
Max. matching biggest possible
Matching covers a set X : every vertex in X is an endpoint for an edge in matching

- Left: M that covers X_{C} is a max matching
- If every edge in $\operatorname{GV}(C)$ is in a matching that covers X_{C}, C is consistent

$\stackrel{\pi}{\infty}$
 Theorem 1

CSP: $\mathcal{P}=(\mathcal{X}, \mathcal{D}, \mathcal{C})$ is diff-arc-consistent iff
for every all-diff $C \in \mathcal{C}$
every edge $\mathrm{GV}(C)$ belongs to a matching that covers X_{C} in $\mathrm{GV}(C)$

Task:

Repeat for each all-diff constraint,

- Build G ($\equiv \mathrm{GV}$) of all-diff constraint C
- Remove edges that do not belong to any matching covering X_{C}

Algorithm 1:

- Compute one $\mathrm{M}(\mathrm{G})$, maximal matching in G
- If M(G) does not cover X_{C}, then stop
- Using $\mathrm{M}(\mathrm{G})$, remove edges that do not belong...

```
                                    Algorithm 1: Diff-Initialization(C)
                                    % returns false if there is no solution, otherwise true
                                    % the function ComputeMaximumMatching(G) com-
                                    putes a maximum matching in the graph }
                                    begin
                                    Build G=(XC,D(XC),E)
                                    M(G)\leftarrowCOMPUTEMAXIMUMMATCHING (G)
                                    if }|M(G)|<|\mp@subsup{X}{C}{}|\mathrm{ then return false
                                    RemoveEdgesFromG(G,M(G))
                                    return true
end
```

\longrightarrow Hopcroft \& Karp: Efficient procedure

for computing a matching covering X_{C}

\longrightarrow Or, maximal flow in bipartite graph (less efficient)

Our problem becomes

Given:

- an all-diff constraint C
- its value graph $G=(X, Y, E)$
- one maximum covering $M(G)$

Remove edges that belong to no matching covering X

Definitions

Given a matching M :
matching edge: an edge in M
free edge: an edge not in M
matched vertex: incident to a matching edge

Questions

Indicate:

- matching edges
- free edges
- matched vertices
free vertex: otherwise
alternating path (cycle): a path (cycle) whose edges are alternatively matching and free
- a free vertex
- an alternating path, length?
length of a path: number of edges in path
- an alternating cycle, length?
- a vital edge
vital edge: belongs to every maximum matching

An edge belongs to some of but not all maximum matchings, iff for an arbitrary maximum matching M, it belongs to either:

- an even alternating cycle, or
- an even alternating path that begins at a free vertex

E

Task:

Given G, and $M(G)$, remove edges that do not belong to any matching covering X_{C}

Algorithm 2

- Build G_{O}
- Mark all edges of G_{O} as unused
- Identify all directed edges that belong to a directed simple path starting at a free vertex by a breadth-first search, mark them as used
- Compute strongly connected components in G_{O}. Mark "used" any directed edge between two vertices in the same strongly connected component, as any such edge belongs to a directed cycle and conversely
- All remaining unused edges, if they are in $M(G)$, mark them as vital else put them in RE and remove them from G

Algorithm 2

```
Algorithm 2: RemoveEdgesFrom \((G, M(G))\)
\(\% R E\) is the set of edges removed from \(G\).
\(\% M(G)\) is a matching of \(G\) which covers \(X\)
\% The function returns \(R E\)
begin
1 Mark all directed edges in \(G_{O}\) as "unused".
    Set \(R E\) to \(\emptyset\).
2 Look for all directed edges that belong to
    a directed simple path which begins at a free
    vertex by a breadth-first search starting from
    free vertices, and mark them as "used".
    Compute the strongly connected components of \(G_{O}\).
    Mark as "used" any directed edge that joins two
    vertices in the same strongly connected component
        for each directed edge de marked as "unused" do
            set \(e\) to the corresponding edge of de
            if \(e \in M(G)\) then mark \(e\) as "vital"
            else
            \(R E \leftarrow R E \cup\{e\}\)
            remove \(e\) from \(G\)
        return \(R E\)
    end
```


Algorithm 2

- ...
- Identify all edges starting at a free vertex by a breadth-first search, mark them as used
- Compute strongly connected components in G_{O}. Mark "used" any directed edge between two vertices in the same strongly connected component, as any such edge belongs to a directed cycle and conversely
- All remaining unused edges, if they are in $M(G)$, mark them as vital else put them in RE and remove them from G

Algorithm 2

- ...
- Identify all edges starting at a free vertex by a breadth-first search, mark them as used
- Compute strongly connected components in G_{O}. Mark "used" any directed edge between two vertices in the same strongly connected component, as any such edge belongs to a directed cycle and conversely
- All remaining unused edges, if they are in $M(G)$, mark them as vital else put them in RE and remove them from G

Assume we have C_{i}, C_{j}, and C_{k} involving a given variable
Compute $\left\{\begin{array}{l}\operatorname{RE}\left(C_{i}\right), \operatorname{RE}\left(C_{j}\right), \operatorname{RE}\left(C_{k}\right), \\ \mathrm{G}=\operatorname{GV}\left(C_{i}\right), \mathrm{M}(\mathrm{G}), \text { etc. }\end{array}\right.$
Idea
N Consider C_{i}
First remove from G deletions due to C_{j}, C_{k}
Second, try to extend the remaining edges in $\mathrm{M}(\mathrm{G})$ into a matching that covers $X_{C_{i}}$
Finally, apply Algorithm 2
... iterate

Example: the Zebra problem
5 houses of different colors
5 inhabitants, different nationalities, different pets, different drinks, different cigarettes
Consider the following facts:

1. The Englishman lives in the red house
2. The Spaniard has a dog
3. Coffee is drunk in the green house
4. The Ukrainian drinks tea
5. The green house is immediately to the right of the ivory house
6. The snail owner smokes Old-Gold
7. etc.

Query: who drinks water?
who owns a zebra?

Zebra: formulation
25 variables: $\left\{\begin{array}{l}5 \text { house-color } C_{1}, C_{2}, \ldots, C_{5} \\ 5 \text { nationalities } N_{1}, N_{2}, \ldots, N_{5} \\ 5 \text { drinks } B_{1}, B_{2}, \ldots, B_{5} \\ 5 \text { cigarettes } T_{1}, T_{2}, \ldots, T_{5} \\ 5 \text { pets } A_{1}, A_{2}, \ldots, A_{5}\end{array}\right.$

1 red	B_{1} coffee	N_{1}	n T_{1} Old-Gold	A_{1} dog
C_{2} green	B_{2} tea	N_{2} Spaniard	T_{2} Chest	
C_{3} ivoiry	B_{3} milk	N_{3} Ukranian	T_{3} Kools	
C_{4} yellow	B_{4} orange	N_{4} Norwegian	T_{4} Lucky-	
C_{5} blue	B_{5} wa	$\mathrm{N}_{5} \mathrm{Japa}$	T_{5} Parl	

Domain of each variable $=\{1,2,3,4,5\}$
(三 $\{h 1, h 2, h 3, h 4, h 5\}$)
Constraints 2-15?

Results (I)

Formulation 1 solved with AC

Formulation 2 solved with GAC-4

Formulation 3 solved with the new technique.
Same results as 2.
B.Y. Choueiry

28

Results (II)

$a: \quad \#$ of binary constraints
$p: \quad$ size of a cluster
c: \# of clusters
$d: \quad \#$ of values in a domain
$\mathcal{O}\left(a d^{2}\right)$: complexity of AC on binary

Formulation 1 solved with AC

- number of binary constraint added is $\mathcal{O}\left(c p^{2}\right)$
- filtering complexity is $\mathcal{O}\left(\left(a+c p^{2}\right) d^{2}\right)$

Formulation 2 solved with GAC-4

- filtering complexity is $\mathcal{O}\left(\frac{d!}{(d-p)!} p\right)$

Formulation 3 solved with the new technique

- arc-consistency is $\mathcal{O}\left(a d^{2}\right)$
- all-diff filtering is $\mathcal{O}\left(c p^{2} d^{2}\right)$
- total filtering is $\mathcal{O}\left(a d^{2}+c p^{2} d^{2}\right)$

Improved arc-consistency Van Hentenryck et al. AIJ 92

Functional

A constraint C is functional with respect to a domain D iff for all $v \in D$ (respectively $w \in D$) there exists at most one $w \in D$ (respectively $v \in D$) such that $C(v, w)$.

Anti-functional

A constraint C is anti-functional with respect to a domain D iff $\neg C$ is functional with respect to D.

Monotonic

A constraint C is monotonic with respect to a domain D iff there exists a total ordering on D such that, for all values v and $w \in D$, such that $v^{\prime} \leq v$ and $w^{\prime} \leq w$.

