Spring Semester, 2011 B.Y. Choueiry
CSCE 421/821: Foundations of Constraint Processing

Homework 1

Generic Data Structures for Storing CSPs

Assigned: Monday, January 24, 2011
Due: Wednesday, February 2, 2011

Total value: 80 points

Contents
1 Help 1
2 Goal of the homework 2
3 General indications 2
4 Basic data structures 3
4.1 Main data structures 3
4.2 Main functions/methods 4
5 Loading and initializing a CSP instance 5
1 Help

If you have any questions, comments, or concerns, please let us know:
e Email us to cse421 AT cse.unl.edu.

e Office hours of Shant (Student Resource Center): Thursday 9:00 a.m. to — 11:00 a.m., or by
appointment.

e Office hours of Robert (Student Resource Center): Thursday 5:00 p.m. to 6:00 p.m. & Friday
9:00 a.m. to 10:00 a.m., or by appointment.

2 Goal of the homework

The goal of this homework is to write code for generating the data structures and accessor functions
that will allow you to implement (most) CSP instances, and to test your implementation by reading
examples from files. This implementation may need to be refined as we progress in the course, but
at least the basic building-blocks for initializing, storing, and manipulating CSP instances should
be available. It is very important that you take this task seriously and do the implementation as
clearly and neatly as possible: Future homework will build upon this code. If you notice any errors
in the design or the description, please quickly mention them to the instructor as you encounter
them. This homework has two parts:

1. Creating the basic data structures. (50 points)

2. Generating the encoding of a CSP instance by (30 points)
reading and parsing the data from an XML file written in XCSP 2.1 format.

Alert: If you are using the existing Java parser
http://cse.unl.edu/~choueiry/CSPTestInstances/To0ls2008.zip,
most of the work is already done for you. Your task will then simply be to learn to use the code
and write whatever pieces are missing. If you are using the existing C++ parser
http://www.cril.univ-artois.fr/~lecoutre/software.html,

you may have to do more work.

This document is perhaps more complicated and longer than the work that you actually have
to do.

3 General indications

Please read carefully the general indications below before you start working on the homework. They
apply for the entire semester.

e Make sure that your code and your files are protected. Your name, date, and course number
must be listed on the top of each file that you submit.

e All programs must be compiled, run and tested on cse.unl.edu. Programs that do not run
correctly in this environment will not be accepted.

e A README file must be submitted. Otherwise, the entire homework is declared invalid. The
README file should describe the content and purpose of the submitted files, and have ALL
the necessary steps to compile and run the program.

e This homework must be done individually. If you receive help from anyone, you must clearly
acknowledge it in the README file. If you collaborate with a colleague or retrieve the code
from some other source, clearly state this information in your README file and clearly state
all your sources. Always acknowledge sources of information (URL, book, class notes, etc.)

in the README file. You will not be penalized if you state your sources, you will if you do
not.

e You can use the programming language of your choice. If this language is not C, C++, or
JAVA, you must inform the instructor before you get started. We are not able to provide
much programming/debugging help. You must check your results with colleagues by listing
your results on the wiki and comparing them with those of your colleagues.

e Inform instructor quickly about typos or other errors that may appear in the specifications
or the files made available online.

4 Basic data structures

Below we specify (as best we can) the data structures needed for storing the encoding of a CSP.
When generating an encoding, we will generate instances of those general data structures. Note
that:

o We will restrict ourselves to binary CSPs. Students looking for a real challenge may want to
consider generalizing their code, now or later, to non-binary CSPs.

e If you have a better idea for implementing your data structures, then you should experiment
with it, and consider the data structures below as mere recommendations.

e [t is very important that you do not mix the data structures used for storing a CSP instance
with the data structures of the solver (in this case, search) used for solving the CSP.

4.1 Main data structures

The design requires primarily the choice of a linked list or an array to hold the variables, constraints
and the domains of the variables. This decision may have a drastic impact on the performance of
the algorithms. Use your judgement to make your choice of the data structures. Depending on the
design of your algorithms, you might revise your decisions at a later stage.

1. Problem instance. Create a data-structure for storing a CSP instance. This data structure
should have the following fields:

e name: the name of the problem, generates one randomly at initialization if none is
provided.
e variables: pointer to the structure holding the variables.

e constraints: pointer to the structure holding the constraints.

2. Variables. Create a data structure for storing the CSP variables.

Each variable must have the following fields:

name: the variable name or identifier.
initial-domain: values in the domain of the variable.

constraints: pointers to the constraints that apply to the variable (i.e., constraints in
the scope of which that variable appears).

neighbors: pointers to the other variables that share a constraint with this variable.

3. Constraints. Data structure holding all the constraints in the CSP. Again, we will focus on
binary constraints. If you like a challenge, you may want to generalize your code, now or
later to non-binary constraints. Each constraint may require different fields depending on its
specification, as in extension or intension:

(a)
(b)
()

A constraint defined in extension as a set of allowable tuples (a.k.a. supports).
A constraint defined in extension as a set of no-goods (a.k.a. conflicts).

A constraint defined in intension, as a function to be implemented by a method. We will
restrict ourselves to those predicate functions that we will encounter in the test instances.
You will implement those predicates as you encounter them.

The constraint should have the following fields:

name: the name of the constraint.
variables: pointers to the variables in the scope of the constraint.

definition: stores the definition of a constraint. If the constraint is defined in intension,
this field should point to the function that defines the constraint, that is, implements
the predicate.

If the constraint is defined in extension, then it has a list of tuples that are either supports
or conflicts. For instance:

C1V1,V2 = {(172)’(3’ 5)7(273)} (1)

is a constraint with three tuples: (1, 2), (3, 5), (2, 3). These tuples may be stored in a
list, in a two dimensional array, a bit matrix, a decision diagram, etc. The bitmap should
be of size d? (binary constraint), where d is the maximum domain-size (more generally,
the size is d*, where k is the maximum constraint arity). The values of the bitmap should
be 0’s in all positions except for the positions: (1, 2), (3, 5), (2, 3), which should be 1’s.

4.2 Main functions/methods

Provide methods to print on the screen the variables and the constraints. These functions can be
used for debugging puposes.
For each variable the following information should be printed:

1. The name of the variable.

2. The name(s) of the constraint(s) that apply to the variable.
3. The values in the domain of the variable.
For each constraint print the following information:
1. The name of the constraint.
2. The names of the variables that are in the scope of the constraint.
3. The way the constraint is defined, i.e. extension-supports, extension-conflicts, or intension.

4. The list of tuples in the definition of the constraint or the name of the function in case of
intension.

5 Loading and initializing a CSP instance
The tasks here are to:

1. Use or write a parser that loads any file of a CSP instance in the XCSP 2.1 format (see below).

2. Load the 16 problem instances in XCSP 2.0 provided by the instructor:
http://cse.unl.edu/~choueiry/CSPTestInstances/.

3. Print the variables and constraints as specified above.

4. Test your code by loading various benchmark problems, which are in XCSP 2.1 format:
http://cse.unl.edu/~choueiry/CSPTestInstances/.

You are requested to read description of a CSP instances specified in the XML XCSP 2.1 format
and generate an encoding of it according to the data structures you have defined above. You can
interface your code with one of the two parsers available online or write your own parser. Familiarize
yourself with the content of the following web pointers, which are very useful:

e Most of the resources are available from:
http://www.cril.univ-artois.fr/~lecoutre/.

e XCSP 2.1 format:
http://arxiv.org/pdf/0902.2362v1.

e Online parsers:
http://www.cril.univ-artois.fr/~lecoutre/software.html, click XCSP Tools.

e Online tools:
http://www.cril.univ-artois.fr/~lecoutre/software.html, click XCSP Tools.

e Benchmark problems:
http://cse.unl.edu/~choueiry/CSPTestInstances/.
http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html.

You may notice that parsers are provided for Java and C/C++. If you chose an alternative
programing language, you may either consider using the parser to parse the XML file to an
intermediate representation of your convenience and then load it to your program, or write a
parser using XML parsing tools in the language you are using.

