Week 6 Recitation

Robert Woodward

February 13, 2011

- (1 min max) Go over quiz from last week
- (2 min max) Go over homework from last week.
- Questions about lecture / homework so far?
- Questions from refresher sheet...
 - 1. Number 7: "Prove that n(2n+1)(2n-1) is always divisible by 3."
- Find the power Set of $\{1, 2, \{3, 4, 5\}\}$:

First, consider how many elements the power set has. If the set has n elements, there will be 2^n elements. Because we have 3 elements, there will be $2^3 = 8$ elements.

Now, we can list all 8 elements:

 $\{ \emptyset, \{1\}, \{2\}, \{\{3, 4, 5\}\}, \\ \{1, 2\}, \{1, \{3, 4, 5\}\}, \{2, \{3, 4, 5\}\}, \\ \{1, 2, \{3, 4, 5\}\} \}$

Note: We use $\{\}$ and not ().

• Find the Cartesian Product for $A \times B \times C$ for $A = \{1, 2, 3\}, B = \{c\}, C = \{\{1, 2, 3\}, \{a, b, c\}\}$:

 $\{(1,c,\{1,2,3\}), (1,c,\{a,b,c\}), (2,c,\{1,2,3\}), (2,c,\{a,b,c\}), (3,c,\{1,2,3\}), (3,c,\{a,b,c\})\}$

• (Rosen 2.2:17b) Show that if A, B, and C are sets, then $\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$ Because the problem does not say what method we must use to prove this, we can take advantage of membership tables:

A	В	C	$A\cap B\cap C$	$\overline{A \cap B \cap C}$	Ā	\bar{B}	\bar{C}	$(\bar{A} \cup \bar{B} \cup \bar{C})$
0	0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	0	1
0	1	0	0	1	1	0	1	1
0	1	1	0	1	1	0	0	1
1	0	0	0	1	0	1	1	1
1	0	1	0	1	0	1	0	1
1	1	0	0	1	0	0	1	1
1	1	1	1	0	0	0	0	0

• (Last 10 minutes) Quiz