Week 14 Recitation

Robert Woodward

April 11, 2011

- Questions about lecture / homework so far?
- Rosen 3.1.9, page 177. A palindrome is a string that reads the same forward and backwards. Describe an algorithm for determining whether a string of n characters is a palindrome.

Algorithm 1: PALINDROME: Checks if a string is a palindrome

Input: $a_1a_2a_3...a_n$, a string of length nOutput: If the string is a palindrome 1 answer \leftarrow true; 2 for $i \leftarrow 1$ to $\lfloor n/2 \rfloor$ do 3 | if $a_i \neq a_{n+1-i}$ then 4 | answer \leftarrow false; 5 | end 6 end 7 return answer;

> Use the Mathematical Analysis of Algorithms to analyze PALINDROME's performance. Recall the general strategy for the Mathematical Analysis of Algorithms:

- 1. Decide on a parameter(s) for the input, n
- 2. Identify the basic operation
- 3. Evaluate if the elementary operation depends only on n
- 4. Set up a summation corresponding to the number of elementary operations
- 5. Simplify the equation to get as simple of a function f(n) as possible.

For PALINDROME:

- 1. The input parameter is n, the size of the string
- 2. The basic operation is the comparison of a_i and a_{n+1-i}

- 3. The elementary operation depends only on n
- 4. The summation for the number of elementary operations is: $\sum_{i=1}^{\lfloor n/2 \rfloor} 1$
- 5. First, recall that: $\sum_{i=m}^{n} 1 = n m + 1$ Therefore, $\sum_{i=1}^{\lfloor n/2 \rfloor} 1 = \lfloor n/2 \rfloor - 1 + 1 = \lfloor n/2 \rfloor$
- Reminder. To prove that $f(n) \in \Delta(g(n))$, we saw three main techniques:
 - 1. Applying the definition: Specify n_0 and c (or c_1 and c_2).
 - 2. The limit method: $\lim_{n\to\infty}\frac{f(n)}{g(n)} = \begin{cases} 0 & f(n) \in \mathcal{O}(g(n)) \\ c > 0 & f(n) \in \Theta(g(n)) \\ \infty & f(n) \in \Omega(g(n)) \end{cases}$

3. Applying the rule of L'Hôpital in the limit method: $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{f'(n)}{g'(n)}$.

• Let $f(n) = 3n^4 + 1$ and $g(n) = n^5 - 100$. Find a tight bound of the form $f(n) \in \Delta(g(n))$ and prove this bound formally.

Intuitively we think that $f(n) \in \mathcal{O}(g(n))$ because the highest degree of f(n) is lower than the highest degree of g(n). Therefore, we want to show $f(n) \in \mathcal{O}(g(n))$.

We need to find:

 $-c \in \mathbb{R}^+$ $-n_0 \in \mathbb{N}$

Such that for every positive integer $n \ge n_0$ we have $f(n) \le cg(n)$ (Note that for $n \ge 4$, $g(n) \ge 0$ because $4^5 - 100 = 1024 - 100 = 924$.) $\forall n \ge n_0 = 4$ we have:

$$3n^4 \le 3n^5 \le 3n^5 + n^5 - 400 = 4n^5 - 400 = 4(n^5 - 100)$$

Also,

$$1 \le n^5 - 100$$

Adding up the above two expressions, we get

$$f(n) = 3n^4 + 1 \le 4(n^5 - 100) + (n^5 - 100) = 5(n^5 - 100) = 5g(n)$$

Therefore, $f(n) \leq 5g(n) \ \forall n \geq n_0 = 4$ and c = 5. Consequently, $f(n) \in \mathcal{O}(g(n))$.

• (Similar to Rosen 3.2, problem 11) Let $f(n) = 3n^4 + 1$ and $g(n) = \frac{n^4}{2}$. Find a tight bound of the form $f(n) \in \Delta(g(n))$ and prove this bound formally.

Intuitively we think that $f(n) \in \Theta(g(n))$ because both f(n) and g(n) have a n^4 term as their highest degree. Therefore, we need to show:

- 1. $f(n) \in \mathcal{O}(g(n))$ and
- 2. $f(n) \in \Omega(g(n))$.
- 1. To show $f(n) \in \mathcal{O}(g(n))$, we need to find:
 - $-c_1 \in \mathbb{R}^+$
 - $-n_0 \in \mathbb{N}$

Such that for every positive integer $n \ge n_0$ we have $f(n) \le c_1 g(n)$. $\forall n \ge n_0 = 1$ we have:

$$3n^4 = 6\frac{n^4}{2}$$

Also,

$$1 \le n^4 = 2\frac{n^4}{2}$$

Adding up the above two expressions, we get:

$$f(n) = 3n^4 + 1 \le 6\frac{n^4}{2} + 2\frac{n^4}{2} = 8\frac{n^4}{2} = 8g(n)$$

Therefore, $f(n) \leq 8g(n) \ \forall n \geq n_0 = 1 \text{ and } c_1 = 8$. Consequently, $f(n) \in \mathcal{O}(g(n))$.

- 2. To show $f(n) \in \Omega(g(n))$, we need to find:
 - $-c_2 \in \mathbb{R}^+ \\ -n_0 \in \mathbb{N}$

such that for every integer $n \ge n_0$ we have $f(n) \ge c_2 g(n)$. For $n_0 \ge 1$, we have:

$$3n^4 \ge n^4 \ge \frac{n^4}{2}$$

Obviously, we have:

 $1 \ge 0$

Adding up the above two expressions, we get:

$$f(n) = 3n^4 + 1 \ge \frac{n^4}{2} + 0 = \frac{n^4}{2} = g(n)$$

Therefore, $f(n) \ge 1g(n) \ \forall n \ge n_0 = 1 \ \text{and} \ c = 1$. Consequently, $f(n) \in \Omega(g(n))$.

Because $f(n) \in \mathcal{O}(g(n))$ and $f(n) \in \Omega(g(n))$, then $f(n) \in \Theta(g(n))$.

- Similar to above, consider instead where $f(n) = 3n^4 1$ and $g(n) = \frac{n^4}{2}$. Find a tight bound of the form $f(n) \in \Delta(g(n))$ and prove this bound formally.
 - 1. To show $f(n) \in \mathcal{O}(g(n))$, it will follow very similar to above.
 - 2. To show $f(n) \in \Omega(g(n))$, we need to find:
 - $c_2 \in \mathbb{R}^+ \\ n_0 \in \mathbb{N}$

such that for every integer $n \ge n_0$ we have $f(n) \ge c_2 g(n)$. For $n_0 \ge 1$, we have:

$$3n^4 - 1 = 6\frac{n^4}{2} - 1 = \frac{n^4}{2} + 5\frac{n^4}{2} - 1 \ge \frac{n^4}{2}$$

(Note that, $5\frac{n^4}{2} - 1 \ge 0$ because $n_0 \ge 1$.) Therefore, we get:

$$f(n) = 3n^4 - 1 \ge \frac{n^4}{2} = g(n)$$

Therefore, $f(n) \ge 1g(n) \ \forall n \ge n_0 = 1 \ \text{and} \ c = 1$. Consequently, $f(n) \in \Omega(g(n))$.

Because $f(n) \in \mathcal{O}(g(n))$ and $f(n) \in \Omega(g(n))$, then $f(n) \in \Theta(g(n))$.

• (Last 10 minutes) Quiz