Week 10 Recitation

Robert Woodward

March 14, 2011

- Questions about lecture / homework so far?
- Rosen 8.6.1(a)

A relation R on a set S is a partial order if it is:

- Reflexive
- Antisymmetric
- Transitive

Note: That if R satisfies these conditions, the set S with the partial order R is called a *partially ordered set (poset)* and is denoted (S, R).

Our relation is:
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Our relation is reflexive, antisymmetric, and transitive. Therefore, our relation is a partial order.

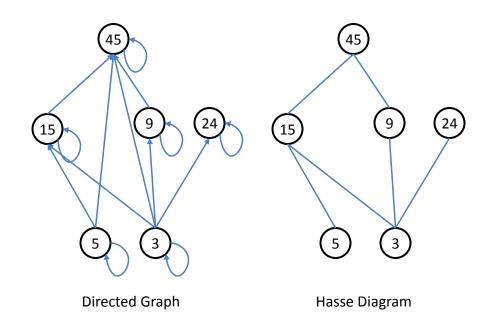
• Rosen 8.6.1 (b)

Our relation is reflexive, and transitive, but is *not* antisymmetric because $(3,4) \in R \land (4,3) \in R$, but $3 \neq 4$.

Therefore, our relation is *not* a partial order.

• Rosen 8.6:33

First draw the relation as a directed graph, then convert it to a hasse diagram:



Maximal elements: $\{45, 24\}$

Minimal elements: $\{5,3\}$

No greatest element

No least element

Upper bounds of $\{3, 5\}$: $\{15, 45\}$

Least upper bounds of $\{3, 5\}$: 15

Lower bounds of $\{15, 45\}$: $\{15, 5, 3\}$

Greatest lower bound of $\{15, 45\}$: 15

Is this poset a latice: No. Consider the lower bounds of $\{5,3\} = \emptyset$. Therefore, there is no greatest lower bound of $\{5,3\}$.

Recall that a poset in which every pair of elements has both a least upper bound and a greatest lower bound is called a latice.

• Rosen 8.1.25(b)

Complementary relation \overline{R} is the set of ordered pairs $\{(a, b) | (a, b) \notin R\}$.

 $\bar{R} = \{(a, b) | a \text{ does not divide } b\}$

• Consider:

$$\bar{R} = \left(\begin{array}{rrrrr} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{array}\right)$$

• Rosen 8.3.11 How can the matrix for \overline{R} , the complement of the relation R, be found from the matrix representing R, when R is a relation on a finite set A?

The matrix for \overline{R} can be found from the matrix of R by flipping all the 1's to 0's, and all the 0's to 1's. This result is because any element that was in R is not in \overline{R} $(1 \rightarrow 0)$, and any element that was not in R is in \overline{R} $(0 \rightarrow 1)$

• Quiz (Last 15 minutes)