Due: Wednesday, April 27, 2011	
Name (Print)	CSE Login
Name 2 (Print)	CSE Login

Instructions Follow instructions carefully, failure to do so may result in points being deducted.

- This is an *optional* homework assignment and is worth only bonus points.
- The homework can be submitted on paper or via handin. Homework *neatly* formatted in LATEX will receive a 5 points bonus. You will not receive the 5 points bonus if you work with a partner (see below).
- Clearly label each problem and submit the answers in order.
- Staple this cover page to the front of your assignment for easier grading.
- Late submissions will not be accepted.
- Show sufficient work to justify your answer(s).
- When you are asked to prove something, you must give as formal, rigorous, and complete a proof as possible. Each step in your proof must contain explanation that would allow us to understand what theorem/logic you have applied to arrive at that step.
- You are to work individually, and all work should be your own. Check partner policy below.
- The CSE academic dishonesty policy is in effect (see http://cse.unl.edu/ugrad/resources/academic_integrity.php).

Partner Policy You may work in pairs, but you must follow these guidelines:

- 1. You must work on all problems together. You may not simply partition the work between you.
- 2. You must use LATEX and you may divide the typing duties however you wish.
- 3. You may not discuss problems with other groups or individuals.
- 4. Hand in only one hard copy with both author's name.

Problem	Page	Points	Score
Problem A	Attached Page	9	
Problem B	Attached Page	9	
7.1.4	456	2	
7.1.8 (a,b,e) (Use backwards substitution)	457	9	
7.1.14	457	9	
7.2.4 (a,b,c,d)	471	8	
7.2.12	471	4	
7.2.24	472	12	
Bonus Total		62	
Typesetting in LATEX (bonus)		5	

Problem A Given the recurrence relation T(n) = 3T(n/2) + 3, and the initial condition T(1) = 5, draw the recurrence tree, clearly stating:

- 1. (1 Point) The root of the tree.
- 2. (1 Point) The first three levels of the tree.
- 3. (1 Point) The last level of the tree.
- 4. (1 Point) The height of the tree.
- 5. (1 Point) The size of each (sub)problem at each of the above levels.
- 6. (2 Points) The non-recursive cost at each of the above levels.
- 7. (2 Points) Give the asymptotic characterization of T(n) (Using Master Theorem).

Problem B Given the recurrence relation T(n) = 2T(n/15) + 3n + 2, and the initial condition T(1) = 1, draw the recurrence tree, clearly stating:

- 1. (1 Point) The root of the tree.
- 2. (1 Point) The first three levels of the tree.
- 3. (1 Point) The last level of the tree.
- 4. (1 Point) The height of the tree.
- 5. (1 Point) The size of each (sub)problem at each of the above levels.
- 6. (2 Points) The non-recursive cost at each of the above levels.
- 7. (2 Points) Give the asymptotic characterization of T(n) (Using Master Theorem).