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Outline

* Definitions: set, element

 Terminology and notation

* Set equal, multi-set, bag, set builder, intension, extension, Venn Diagram (representation), empty
set, singleton set, subset, proper subset, finite/infinite set, cardinality

* Proving equivalences

* Power set

* Tuples (ordered pair)

* Cartesian Product (a.k.a. Cross product), relation

* Quantifiers

* Set Operations (union, intersection, complement, difference), Disjoint sets

» Set equivalences (cheat sheet or Table 1, page 124)
* Inclusion in both directions
* Using membership tables

* Generalized Unions and Intersection
 Computer Representation of Sets
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Introduction (1)

 We have already implicitly dealt with sets

— Integers (Z), rationals (Q), naturals (N), reals (R), etc.
 We will develop more fully

— The definitions of sets

— The properties of sets

— The operations on sets

e Definition: A setis an unordered collection of
(unique) objects

* Sets are fundamental discrete structures and for the
basis of more complex discrete structures like graphs
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Introduction (2)

e Definition: The objects in a set are called
elements or members of a set. A set is said to

contain its elements

 Notation, for a set A:
— X &€ A: xis an element of A
— X & A: x is not an element of A
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Terminology (1)

* Definition: Two sets, A and B, are equal is they
contain the same elements. We write A=B.

 Example:
—{2,3,5,7}={3,2,7,5}, because a set is unordered

— Also, {2,3,5,7}={2,2,3,5,3,7} because a set contains
uniqgue elements

— However, {2,3,5,7} #{2,3}
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Terminology (2)

A multi-set is a set where you specify the number of
occurrences of each element: {m,-a;,m,-a,,...,ma }is
a set where

— m, occurs a, times
— m, occurs a, times

— m_ occurs a, times

* |In Databases, we distinguish
— A set: elements cannot be repeated
— A bag: elements can be repeated
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Terminology (3)

* The set-builder notation
O={x | (x&2) A (x=2k) for some k&EZ}

reads: O is the set that contains all x such that x is an

integer and x is even
* Asetis defined in intension when you give its set-

builder notation

O={x | (x&2) A (0=x=8) A (x=2k) for some kEZ}

 Asetis defined in extension when you enumerate all

the elements:

0={0,2,4,6,8}
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Venn Diagram: Example

* Aset can be represented graphically using a
Venn Diagram

U
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More Terminology and Notation (1)

* Aset that has no elements is called the empty set or
null set and is denoted
* Asetthat has one element is called a singleton set.

— For example: {a}, with brackets, is a singleton set
— a, without brackets, is an element of the set {a}

* Note the subtlety in & = {J}
— The left-hand side is the empty set

— The right hand-side is a singleton set, and a set containing
a set
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More Terminology and Notation (2)

 Definition: A is said to be a subset of B, and
we write A C B, if and only if every element of

A is also an element of B
* That is, we have the equivalence:
ACB < Vx(xeEA=x€&B)
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More Terminology and Notation (3)

* Theorem: For any set S Theorem 1, page 115
—JCSand
—SCS

 The proof is in the book, an excellent example
of a vacuous proof
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More Terminology and Notation (4)

 Definition: A set A thatis a subset of a set B is
called a proper subset if A = B.

e That is there is an element x&EB such that xZA
* Wewrite: ACB,ACB
* |n LaTex:
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More Terminology and Notation (5)

e Sets can be elements of other sets

 Examples
— Sl = {@I{a}l{b}l{alb}lc}
—5,=1{1},12,4,8},{3},161,4,5,6}

CSCE 235 Sets 13



More Terminology and Notation (6)

* Definition: If there are exactly n distinct
elements in a set S, with n a nonnegative
integer, we say that:

— S is a finite set, and
— The cardinality of Sis n. Notation: |S| =n.

 Definition: A set that is not finite is said to be
infinite
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More Terminology and Notation (7)

 Examples

— Let B ={x | (x<100) A (x is prime)}, the cardinality
of B is |B|=25 because there are 25 primes less
than or equal to 100.

— The cardinality of the empty setis |J|=0
—The sets N, Z, Q, R are all infinite
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Proving Equivalence (1)

* You may be asked to show that a set is
— a subset of,
— proper subset of, or
— equal to another set.

* To prove that A is a subset of B, use the equivalence discussed
earlier AC B < Vx(xEA = x&EB)

— To prove that A C B it is enough to show that for an arbitrary
(nonspecific) element x, XEA implies that x is also in B.

— Any proof method can be used.

* To prove that A is a proper subset of B, you must prove

— Ais a subset of B and
— 3x (XEB) A (XEA)
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Proving Equivalence (2)

* Finally to show that two sets are equal, it is sufficient
to show independently (much like a biconditional)
that

— AC B and
—BCA

* Logically speaking, you must show the following

guantified statements:

(Vx (x€A = xEB)) A (Vx (XEB = x&A))

we will see an example later..
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Power Set (1)

* Definition: The power set of a set S, denoted P
(S), is the set of all subsets of S.

 Examples
— Let A={a,b,c}, P(A)={,{a},{b},{c},{a,b},{b,c},{a,c},{a,b,c}}
— Let A={{a,b},c}, P(A)={S,{{a,b}},{c},{{a,b},c}}

* Note: the empty set @ and the set itself are
always elements of the power set. This fact
follows from Theorem 1 (Rosen, page 115).
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Power Set (2)

* The power set is a fundamental combinatorial
object useful when considering all possible
combinations of elements of a set

* Fact: Let S be a set such that |S|=n, then
[P(S)| =2
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Outline

 Definitions: set, element

 Terminology and notation

* Set equal, multi-set, bag, set builder, intension, extension, Venn Diagram (representation),
empty set, singleton set, subset, proper subset, finite/infinite set, cardinality

* Proving equivalences

* Power set

* Tuples (ordered pair)

e Cartesian Product (a.k.a. Cross product), relation

* Quantifiers

* Set Operations (union, intersection, complement, difference), Disjoint sets

* Set equivalences (cheat sheet or Table 1, page 124)
* Inclusion in both directions
* Using membership tables

e Generalized Unions and Intersection
 Computer Representation of Sets
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Tuples (1)

e Sometimes we need to consider ordered
collections of objects

* Definition: The ordered n-tuple (a,,a,,...,a,) is
the ordered collection with the element a,
being the i-th element for i=1,2,...,n

* Two ordered n-tuples (a,,a,,...,a,) and (b,,b,,
..,b,) are equal iff for every i=1,2,...,n we have
a=b.(a,a,,...,a,)

e A 2-tuple (n=2) is called an ordered pair
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Cartesian Product (1)

* Definition: Let A and B be two sets. The Cartesian product of
A and B, denoted AxB, is the set of all ordered pairs (a,b)
where aEA and bEB

AxB={(a,b) | (a&A) A (b €B) }
 The Cartesian product is also known as the cross product

* Definition: A subset of a Cartesian product, R € AxB is called a
relation. We will talk more about relations in the next set of
slides

 Note: AxB = BxA unless A= or B=J or A=B. Find a counter
example to prove this.
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Cartesian Product (2)

e Cartesian Products can be generalized for any
n-tuple

e Definition: The Cartesian product of n sets,
ALA,, ..., A, denoted A xA,x... XA, is
A xA,x... xA ={(aja,,..,a,) | a, €A fori=1,2,...,n}
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Notation with Quantifiers

 Whenever we wrote dxP(x) or VxP(x), we specified
the universe of discourse using explicit English
language
* Now we can simplify things using set notation!
* Example
— Vx€R (x?=0)
— d x& Z (x*=1)
— Also mixing quantifiers:
Va,b,c € R x & C (ax?+bx+c=0)
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Outline

* Set Operations (union, intersection, complement, difference), Disjoint sets

« Set equivalences (cheat sheet or Table 1, page 124)
* Inclusion in both directions
e Using membership tables

* Generalized Unions and Intersection
 Computer Representation of Sets
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Set Operations

* Arithmetic operators (+,-, x ,+) can be used on
pairs of numbers to give us new numbers

* Similarly, set operators exist and act on two

sets to give us new sets
— Union

— Intersection

— Set difference

— Set complement

— Generalized union

— Generalized intersection
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Set Operators: Union

 Definition: The union of two sets A and B is
the set that contains all elements in A, B, or
both. We write:

AUB={x| (x&A) v (x&B)}

U
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Set Operators: Intersection

e Definition: The intersection of two sets A and
B is the set that contains all elements that are
element of both A and B. We write:

ANB={x| (x&A) A (x&B)}

U
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Disjoint Sets

* Definition: Two sets are said to be disjoint if
their intersection is the empty set: ANB=

U
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Set Difference

* Definition: The difference of two sets A and B,
denoted A\B or A-B, is the set
containing those elements that are in A but

not in B

U
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Set Complement

* Definition: The complement of a set A,
denoted A ($\bar$), consists of all elements not
in A. That is the difference of the universal set
and U: U\A

A=AC={x | x&A)

U
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Set Complement: Absolute & Relative

* Given the Universe U, and A,B C U.
* The (absolute) complement of A is A=U\A
* The (relative) complement of A in B is B\A

U

A

U
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Set Idendities

 There are analogs of all the usual laws for set
operations. Again, the Cheat Sheat is available
on the course webpage:

nttp://www.cse.unl.edu/~cse235/files/
_LogicalEquivalences.pdf

* Let’s take a quick look at this Cheat Sheet or at
Table 1 on page 124 in your textbook
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Proving Set Equivalences

e Recall that to prove such identity, we must show
that:
1. The left-hand side is a subset of the right-hand side
2. The right-hand side is a subset of the left-hand side
3. Then conclude that the two sides are thus equal

 The book proves several of the standard set
identities
 We will give a couple of different examples here
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Proving Set Equivalences: Example A (1)

* Let
— A={X
— B={x
— C={x

X is even}
X is @ multiple of 3}
X is a multiple of 6}

e Show that AMB=C

CSCE 235

Sets

35



Proving Set Equivalences: Example A (2)

« ANBCC: VXxEANB
=> X is @ multiple of 2 and x is a multiple of 3
=> we can write x=2.3.k for some integer k

= x=6k for some integer k = x is a multiple of 6
= x&C

« CCANB: V x&C
=> X is a multiple of 6 = x=6k for some integer k
= x=2(3k)=3(2k) = x is a multiple of 2 and of 3
= X & AMNB
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Proving Set Equivalences: Example B (1)

* An alternative prove is to use membership
tables where an entry is

— 1 if a chosen (but fixed) element is in the set
— 0 otherwise

 Example: Show that
ANBNC=AUBUC
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Proving Set Equivalences: Example B (2)

EEIWEEI_

000 1 1
001 0 1 110 1
010 0 1 101 1
011 0 1 100 1
100 0 1 011 1
101 0 1 010 1
110 0 1 001 1
111 1 0 00O 0

e 1 under a set indicates that “an element is in the set”

* If the columns are equivalent, we can conclude that indeed
the two sets are equal
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Generalizing Set Operations: Union and Intersection

* |n the previous example, we showed De
Morgan’s Law generalized to unions involving
3 sets

* |n fact, De Morgan’s Laws hold for any finite
set of sets

* Moreover, we can generalize set operations
union and intersection in a straightforward
manner to any finite number of sets
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Generalized Union

e Definition: The union of a collection of sets is
the set that contains those elements that are
members of at least one set in the collection

Ua=aAUAU..UA

=1

LaTeX: S\Bigcup {i=1}*{n}A_i=A_1\cup A_2 \cup\ldots\cup A nS
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Generalized Intersection

e Definition: The intersection of a collection of
sets is the set that contains those elements
that are members of every set in the collection

(NA=A,NAN.NA

=1

LaTex: S\Bigcap_{i=1}*{n}A_i=A_ 1\cap A_2 \cap\ldots\cap A nS
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Computer Representation of Sets (1)

* There really aren’t ways to represent infinite sets by a
computer since a computer has a finite amount of memory

e |f we assume that the universal set U is finite, then we can
easily and effectively represent sets by bit vectors

e Specifically, we force an ordering on the objects, say:

U={a,, a,,...,a,}
 For aset ACU, a bit vector can be defined as, for i=1,2,...,n
— b=0ifa, €A
— b=1lifa, €A
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Computer Representation of Sets (2)

e Examples
— Let U={0,1,2,3,4,5,6,7} and A={0,1,6,7}
— The bit vector representing Ais: 1100 0011
— How is the empty set represented?
— How is U represented?

e Set operations become trivial when sets are
represented by bit vectors

— Union is obtained by making the bit-wise OR
— Intersection is obtained by making the bit-wise AND
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Computer Representation of Sets (3)

e Let U={0,1,2,3,4,5,6,7}, A={0,1,6,7}, B={0,4,5}
 What is the bit-vector representation of B?

 Compute, bit-wise, the bit-vector
representation of AMNB

 Compute, bit-wise, the bit-vector
representation of AUB

* What sets do these bit vectors represent?
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Programming Question

e Using bit vector, we can represent sets of
cardinality equal to the size of the vector

* What if we want to represent an arbitrary
sized set in a computer (i.e., that we do not
know a priori the size of the set)?

e What data structure could we use?
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