Partial Orders

Section 8.6 of Rosen

Spring 2011

CSCE 235 Introduction to Discrete Structures

Course web-page: cse.unl.edu/~cse235

Questions: cse235@cse.unl.edu

Outline

- Motivating example
- Definitions
 - Partial ordering, comparability, total ordering, well ordering
- Principle of well-ordered induction
- Lexicographic orderings
- Hasse Diagrams
- Extremal elements
- Lattices
- Topological Sorting

Motivating Example (1)

- Consider the renovation of Avery Hall. In this process several tasks were undertaken
 - Remove Asbestos
 - Replace windows
 - Paint walls
 - Refinish floors
 - Assign offices
 - Move in office furniture

Motivating Example (2)

- Clearly, some things had to be done before others could begin
 - Asbestos had to be removed before anything (except assigning offices)
 - Painting walls had to be done before refinishing floors to avoid ruining them, etc.
- On the other hand, several things could be done concurrently:
 - Painting could be done while replacing the windows
 - Assigning offices could be done at anytime before moving in office furniture
- This scenario can be nicely modeled using <u>partial orderings</u>

Partial Orderings: Definitions

Definitions:

- A relation R on a set S is called a partial order if it is
 - Reflexive
 - Antisymmetric
 - Transitive
- A set S together with a partial ordering R is called a partially ordered set (poset, for short) and is denote (S,R)
- Partial orderings are used to give an order to sets that may not have a natural one
- In our renovation example, we could define an ordering such that (a,b)∈R if 'a must be done before b can be done'

Partial Orderings: Notation

- We use the notation:
 - a≼b, when (a,b)∈R

\$\preccurlyeq\$

- a \prec b, when (a,b)∈R and a \neq b

\$\prec\$

- The notation ≺ is not to be mistaken for "less than" (≺ versus ≤)
- The notation

 is used to denote any partial ordering

Comparability: Definition

Definition:

- The elements a and b of a poset (S, \preccurlyeq) are called <u>comparable</u> if either a \preccurlyeq b or b \preccurlyeq a.
- When for a,b∈S, we have neither a \preccurlyeq b nor b \preccurlyeq a, we say that a,b are <u>incomparable</u>
- Consider again our renovation example
 - Remove Asbestos \prec a_i for all activities a_i except assign offices
 - Paint walls

 Refinish floors
 - Some tasks are incomparable: Replacing windows can be done before,
 after, or during the assignment of offices

Total orders: Definition

Definition:

- If (S, ≼) is a poset and every two elements of S are comparable, S is called a <u>totally ordered set</u>.
- − The relation \leq is said to be a <u>total order</u>

Example

CSCE 235

- The relation "less than or equal to" over the set of integers (Z, \le) since for every a,b∈Z, it must be the case that a ≤ b or b ≤ a
- What happens if we replace ≤ with <?</p>

The relation < is not reflexive, and (Z,<) is not a poset

Well Orderings: Definition

- **Definition**: (S, \preceq) is a well-ordered set if
 - It is a poset
 - Such that ≼ is a total ordering and
 - Such that every non-empty subset of S has a <u>least element</u>
- Example
 - The natural numbers along with \leq , (N, \leq), is a well-ordered set since any nonempty subset of N has a least element and \leq is a total ordering on N
 - However, (Z, \leq) is <u>not</u> a well-ordered set
 - Why? $Z^- \subset Z$ but does not have a least element
 - Is it totally ordered? Yes

Outline

- Motivating example
- Definitions
 - Partial ordering, comparability, total ordering, well ordering
- Principle of well-ordered induction
- Lexicographic orderings
- Hasse Diagrams
- Extremal elements
- Lattices
- Topological Sorting

Principle of Well-Ordered Induction

- Well-ordered sets are the basis of the proof technique known as induction (more when we cover Chapter 3)
- Theorem: Principle of Well-Ordered Induction

Given S is a well-ordered set. P(x) is true for all $x \in S$ if

(Basis Step: $P(x_0)$ is true for the least element in S and)

Inductive Step: For every $y \in S$ if P(x) is true for all $x \prec y$, then P(y) is true

Principle of Well-Ordered Induction: Proof

Proof: (S well ordered) \land (Basis Step) \land (Induction Step) $\Rightarrow \forall x \in S$, P(x)

- Suppose that it is not the case the P(x) holds for all $x \in S$
 - $\Rightarrow \exists y P(y) \text{ is false}$
 - \Rightarrow A={ x \in S | P(x) is false } is not empty
- S is well ordered ⇒ A has a least element a
- Since P(x₀) is true and P(a) is false ⇒ a≠x₀
- P(x) holds for all x∈S and x≺a, then P(a) holds by the induction step
- This yields a contradiction

QED

Outline

- Motivating example
- Definitions
 - Partial ordering, comparability, total ordering, well ordering
- Principle of well-ordered induction
- Lexicographic orderings
 - Idea, on $A_1 \times A_2$, $A_1 \times A_2 \times ... \times A_n$, S^t (strings)
- Hasse Diagrams
- Extremal elements
- Lattices
- Topological Sorting CSCE 235

Lexicographic Orderings: Idea

- Lexigraphic ordering is the same as any dictionary or phone-book ordering:
 - We use alphabetic ordering
 - Starting with the first character in the string
 - Then the next character, if the first was equal, etc.
 - If a word is shorter than the other, than we consider that the 'no character' of the shorter word to be less than 'a'

Lexicographic Orderings on A₁×A₂

- Formally, lexicographic ordering is defined by <u>two</u> other orderings
- **Definition**: Let (A_1, \preccurlyeq_1) and (A_2, \preccurlyeq_2) be two posets. The lexicographic ordering \prec on the Cartesian product $A_1 \times A_2$ is defined by

$$(a_1,a_2)\prec (a'_1,a'_2)$$
 if $(a_1\prec_1 a'_1)$ or $(a_1=a'_1 \text{ and } a_2\prec_2 a'_2)$

• If we add equality to the lexicographic ordering \prec on $A_1 \times A_2$, we obtain a partial ordering

Lexicographic Ordering on $A_1 \times A_2 \times ... \times A_n$

- Lexicographic ordering generalizes to the Cartesian Product of n set in a natural way
- Define \prec on $A_1 \times A_2 \times ... \times A_n$ by $(a_1,a_2,...,a_n) \prec (b_1,b_2,...,b_n)$

If a1 \prec b1 or of there is an integer i>0 such that

$$a_1=b_1$$
, $a_2=b_2$, ..., $a_i=b_i$ and $a_{i+1} < b_{i+1}$

Lexicographic Ordering on Strings

- Consider the two non-equal strings $a_1 a_2 ... a_m$ and $b_1 b_2 ... b_n$ on a poset (S^t , \preceq)
- Let
 - -t=min(n,m)
 - \prec be the lexicographic ordering on S^t
- a₁a₂...a_m is less than b₁b₂...b_n if and only if
 - $-(a_1,a_2,...,a_t) \prec (b_1,b_2,...,b_t)$ or
 - $-(a_1,a_2,...,a_t)=(b_1,b_2,...,b_t)$ and m<n

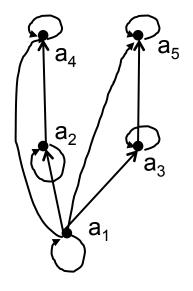
Outline

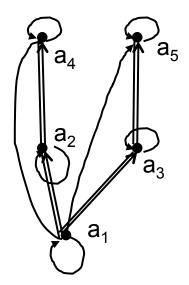
- Motivating example
- Definitions
 - Partial ordering, comparability, total ordering, well ordering
- Principle of well-ordered induction
- Lexicographic orderings
- Hasse Diagrams
- Extremal elements
- Lattices
- Topological Sorting

Hasse Diagrams

- Like relations and functions, partial orders have a convenient graphical representation: Hasse Diagrams
 - Consider the <u>digraph</u> representation of a partial order
 - Because we are dealing with a partial order, we know that the relation must be reflexive and transitive
 - Thus, we can simplify the graph as follows
 - Remove all self loops
 - Remove all transitive edges
 - Remove directions on edges assuming that they are oriented upwards
 - The resulting diagram is far simpler

Hasse Diagram: Example

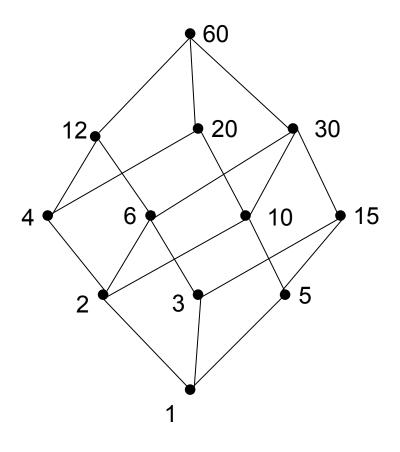




Hasse Diagrams: Example (1)

- Of course, you need not always start with the complete relation in the partial order and then trim everything.
- Rather, you can build a Hasse Diagram directly from the partial order
- Example: Draw the Hasse Diagram
 - for the following partial ordering: {(a,b) | a|b }
 - on the set {1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60}
 - (these are the divisors of 60 which form the basis of the ancient Babylonian base-60 numeral system)

Hasse Diagram: Example (2)



Outline

- Motivating example
- Definitions
 - Partial ordering, comparability, total ordering, well ordering
- Principle of well-ordered induction
- Lexicographic orderings
- Hasse Diagrams
- Extremal elements
- Lattices
- Topological Sorting

Extremal Elements: Summary

We will define the following terms:

- A maximal/minimal element in a poset (S, ≼)
- The maximum (greatest)/minimum (least) element of a poset (S, ≼)
- An upper/lower bound element of a subset A of a poset (S, ≼)
- The greatest lower/least upper bound element of a subset A of a poset (S, ≼)

Extremal Elements: Maximal

- Definition: An element a in a poset (S, ≼) is called <u>maximal</u> if it is not less than any other element in S. That is: ¬(∃b∈S (a≺b))
- If there is one <u>unique</u> maximal element a, we call it the <u>maximum</u> element (or the <u>greatest</u> element)

Extremal Elements: Minimal

- Definition: An element a in a poset (S, ≼) is called minimal if it is not greater than any other element in S. That is: ¬(∃b∈S (b≺a))
- If there is one <u>unique</u> minimal element a, we call it the <u>minimum</u> element (or the <u>least</u> element)

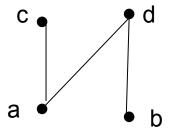
Extremal Elements: Upper Bound

- **Definition**: Let (S, \preceq) be a poset and let $A\subseteq S$. If u is an element of S such that $a \preceq u$ for all $a \in A$ then u is an <u>upper bound of A</u>
- An element x that is an upper bound on a subset A and is less than all other upper bounds on A is called the <u>least upper bound</u> on A. We abbreviate it as lub.

Extremal Elements: Lower Bound

- **Definition**: Let (S, \preceq) be a poset and let $A \subseteq S$. If I is an element of S such that $I \preceq a$ for all $a \in A$ then I is an <u>lower bound of A</u>
- An element x that is a lower bound on a subset A and is greater than all other lower bounds on A is called the greatest lower bound on A. We abbreviate it glb.

Extremal Elements: Example 1



What are the minimal, maximal, minimum, maximum elements?

- Minimal: {a,b}
- Maximal: {c,d}
- There are no unique minimal or maximal elements, thus no minimum or maximum

Extremal Elements: Example 2

Give lower/upper bounds & glb/lub of the sets:

{d,e,f}, {a,c} and {b,d}

g h i i d e f

$\{d,e,f\}$

- Lower bounds: \emptyset , thus no glb
- Upper bounds: ∅, thus no lub

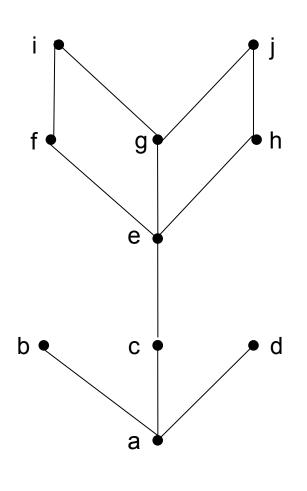
{a,c}

- Lower bounds: \emptyset , thus no glb
- Upper bounds: {h}, lub: h

{b,d}

- Lower bounds: {b}, glb: b
- Upper bounds: {d,g}, lub: d because d≺g

Extremal Elements: Example 3



- Minimal/Maximal elements?
 - Minimal & Minimum element: a
 - Maximal elements: b,d,i,j
- Bounds, glb, lub of {c,e}?
 - Lower bounds: {a,c}, thus glb is c
 - Upper bounds: {e,f,g,h,i,j}, thus lub is e
- Bounds, glb, lub of {b,i}?
 - Lower bounds: {a}, thus glb is c
 - Upper bounds: \emptyset , thus lub DNE

Outline

- Motivating example
- Definitions
 - Partial ordering, comparability, total ordering, well ordering
- Principle of well-ordered induction
- Lexicographic orderings
- Hasse Diagrams
- Extremal elements
- Lattices
- Topological Sorting

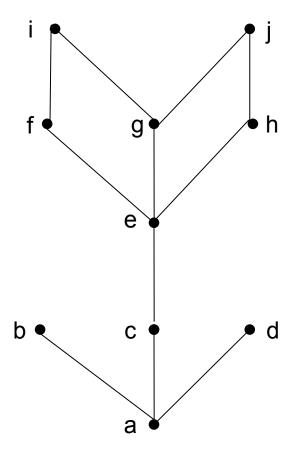
Lattices

- A special structure arises when <u>every</u> pair of elements in a poset has an lub and a glb
- Definition: A <u>lattice</u> is a partially ordered set in which <u>every</u> pair of elements has both
 - a least upper bound and
 - a greatest lower bound

Lattices: Example 1

 Is the example from before a lattice?

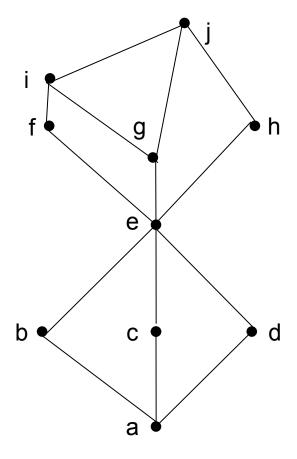
 No, because the pair {b,c} does not have a least upper bound



Lattices: Example 2

 What if we modified it as shown here?

 Yes, because for any pair, there is an lub & a glb



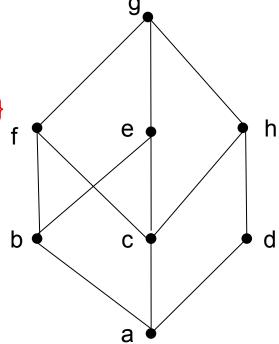
Lattices: Example 3

Is this example a lattice?

No!

- The lower bound of A={e,f} is {a,b,c}
- However, A has no glb

Similarly, B={b,c} has no ulb



A Lattice Or Not a Lattice?

- To show that a partial order is not a lattice, it suffices to find a pair that does not have an lub or a glb (i.e., a counter-example)
- For a pair not to have an lub/glb, the elements of the pair must first be incomparable (Why?)
- You can then view the upper/lower bounds on a pair as a sub-Hasse diagram: If there is no maximum/minimum element in this subdiagram, then it is not a lattice

Outline

- Motivating example
- Definitions
 - Partial ordering, comparability, total ordering, well ordering
- Principle of well-ordered induction
- Lexicographic orderings
- Hasse Diagrams
- Extremal elements
- Lattices
- Topological Sorting

Topological Sorting

- Let us return to the introductory example of Avery Hall renovation. Now that we have got a partial order model, it would be nice to actually create a concrete schedule
- That is, given a <u>partial order</u>, we would like to transform it into a <u>total order</u> that is <u>compatible</u> with the partial order
- A total order is <u>compatible</u> if it does not violate any of the original relations in the partial order
- Essentially, we are simply <u>imposing an order on incomparable</u> elements in the partial order

Topological Sorting: Preliminaries (1)

- Before we give the algorithm, we need some tools to justify its correctness
- Fact: Every <u>finite</u>, <u>nonempty</u> poset (S,≼) has a <u>minimal</u> element
- We will prove the above fact by a form of reductio ad absurdum

Topological Sorting: Preliminaries (2)

Proof:

- Assume, to the contrary, that a nonempty finite poset (S,≼) has no minimal element. In particular, assume that a₁ is not a minimal element.
- Assume, w/o loss of generality, that |S|=n
- If a_1 is not minimal, then there exists a_2 such that $a_2 \prec a_1$
- But a₂ is also not minimal because of the above assumption
- Therefore, there exists a_3 such that $a_3 \prec a_2$. This process proceeds until we have the last element a_n . Thus, $a_n \prec a_{n-1} \prec ... \prec a_2 \prec a_1$
- Finally, by definition a_n is the minimal element

QED

Topological Sorting: Intuition

- The idea of topological sorting is
 - We start with a poset (S, \leq)
 - We remove a minimal element, choosing arbitrarily if there is more than one. Such an element is guaranteed to exist by the previous fact
 - As we remove each minimal element, one at a time, the set S shrinks
 - Thus we are guaranteed that the algorithm will <u>terminate</u> in a finite number of steps
 - Furthermore, the order in which the elements are removed is a total order: $a_1 \prec a_2 \prec ... \prec a_{n-1} \prec a_n$
- Now, we can give the algorithm itself

Topological Sorting: Algorithm

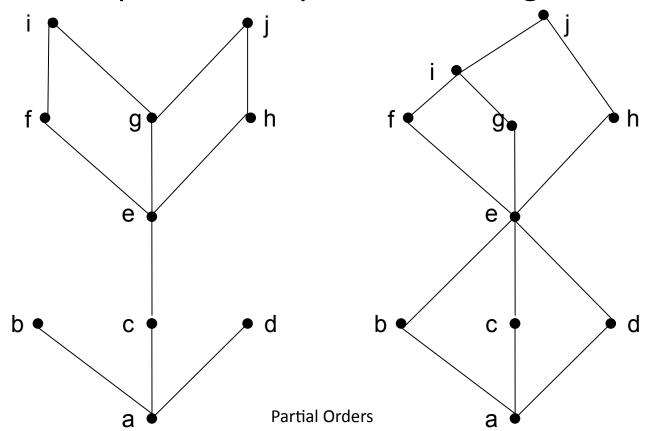
Input: (S, \preceq) a poset with |S|=n

Output: A total ordering $(a_1, a_2, ..., a_n)$

- 1. $k \leftarrow 1$
- 2. While S Do
- 3. $a_k \leftarrow$ a minimal element in S
- 4. $S \leftarrow S \setminus \{a_k\}$
- 5. $k \leftarrow k+1$
- 6. **End**
- 7. **Return** $(a_1, a_2, ..., a_n)$

Topological Sorting: Example

 Find a compatible ordering (topological ordering) of the poset represented by the Hasse diagrams below



44

CSCE 235

Summary

- Definitions
 - Partial ordering, comparability, total ordering, well ordering
- Principle of well-ordered induction
- Lexicographic orderings
 - Idea, on $A_1 \times A_2$, $A_1 \times A_2 \times ... \times A_n$, S^t (strings)
- Hasse Diagrams
- Extremal elements
 - Minimal/minimum, maximal/maximum, glb, lub
- Lattices
- Topological Sorting