Master Theorem

Section 7.3 of Rosen
Spring 2011
CSCE 235 Introduction to Discrete Structures
Course web-page: cse.unl.edu/~cse235
Questions: cse235@cse.unl.edu
Outline

• Motivation
• The Master Theorem
 – Pitfalls
 – 3 examples
• 4th Condition
 – 1 example
Motivation: Asymptotic Behavior of Recursive Algorithms

• When analyzing algorithms, recall that we only care about the asymptotic behavior
• Recursive algorithms are no different
• Rather than solving exactly the recurrence relation associated with the cost of an algorithm, it is sufficient to give an asymptotic characterization
• The main tool for doing this is the master theorem
Outline

• Motivation

• **The Master Theorem**
 – Pitfalls
 – 3 examples

• 4th Condition
 – 1 example
Master Theorem

Let \(T(n) \) be a monotonically increasing function that satisfies

\[
T(n) = a \cdot T(n/b) + f(n)
\]

\(T(1) = c \)

where \(a \geq 1, \ b \geq 2, \ c > 0 \). If \(f(n) \) is \(\Theta(n^d) \) where \(d \geq 0 \) then

\[
T(n) = \begin{cases}
\Theta(n^d) & \text{if } a < b^d \\
\Theta(n^d \log n) & \text{if } a = b^d \\
\Theta(n^{\log_b a}) & \text{if } a > b^d
\end{cases}
\]
Master Theorem: Pitfalls

• You cannot use the Master Theorem if
 – $T(n)$ is not monotone, e.g. $T(n) = \sin(x)$
 – $f(n)$ is not a polynomial, e.g., $T(n)=2T(n/2)+2^n$
 – b cannot be expressed as a constant, e.g.
 \[T(n) = T(\sqrt{n}) \]

• Note that the Master Theorem does not solve the recurrence equation

• Does the base case remain a concern?
Master Theorem: Example 1

- Let \(T(n) = T(n/2) + \frac{1}{2} n^2 + n \). What are the parameters?
 \[
 a = 1 \\
 b = 2 \\
 d = 2
 \]

 Therefore, which condition applies?

 \(1 < 2^2 \), case 1 applies

- We conclude that
 \[
 T(n) \in \Theta(n^d) = \Theta(n^2)
 \]
Master Theorem: Example 2

- Let $T(n) = 2T(n/4) + \sqrt{n} + 42$. What are the parameters?
 - $a = 2$
 - $b = 4$
 - $d = 1/2$

Therefore, which condition applies?
- $2 = 4^{1/2}$, case 2 applies

- We conclude that

$$T(n) \in \Theta(n^d \log n) = \Theta(\log n \sqrt{n})$$
Master Theorem: Example 3

• Let $T(n) = 3 \cdot T(n/2) + 3/4n + 1$. What are the parameters?

 \begin{align*}
 a &= 3 \\
 b &= 2 \\
 d &= 1
 \end{align*}

 Therefore, which condition applies?

 $3 > 2^1$, case 3 applies

• We conclude that

$$T(n) \in \Theta(n^{\log_b a}) = \Theta(n^{\log_2 3})$$

• Note that $\log_2 3 \approx 1.584...$, can we say that $T(n) \in \Theta(n^{1.584})$

 No, because $\log_2 3 \approx 1.5849...$ and $n^{1.584} \notin \Theta(n^{1.5849})$
Outline

• Motivation
• The Master Theorem
 – Pitfalls
 – 3 examples
• \textbf{4}^{\text{th}} Condition
 – 1 example
‘Fourth’ Condition

- Recall that we cannot use the Master Theorem if \(f(n) \), the non-recursive cost, is not a polynomial.
- There is a limited 4\(^{th}\) condition of the Master Theorem that allows us to consider polylogarithmic functions.
- **Corollary:** If \(f(n) \in \Theta(n^{\log_b a} \log^k n) \) for some \(k \geq 0 \) then \(T(n) \in \Theta(n^{\log_b a} \log^{k+1} n) \).
- This final condition is fairly limited and we present it merely for sake of completeness. Relax ☺️
‘Fourth’ Condition: Example

• Say we have the following recurrence relation
 \[T(n) = 2 \cdot T(n/2) + n \log n \]

• Clearly, \(a = 2 \), \(b = 2 \), but \(f(n) \) is not a polynomial. However, we have \(f(n) \in \Theta(n \log n) \), \(k = 1 \)

• Therefore by the 4\(^{th} \) condition of the Master Theorem we can say that

\[T(n) \in \Theta(n^{\log_b a} \log^{k+1} n) = \Theta(n^{\log_2 2} \log^2 n) = \Theta(n \log^2 n) \]
Summary

• Motivation
• The Master Theorem
 – Pitfalls
 – 3 examples
• 4th Condition
 – 1 example