Master Theorem

Section 7.3 of Rosen

Spring 2011

CSCE 235 Introduction to Discrete Structures

Course web-page: cse.unl.edu/~cse235

Questions: cse235@cse.unl.edu

Outline

- Motivation
- The Master Theorem
 - Pitfalls
 - 3 examples
- 4th Condition
 - 1 example

Motivation: Asymptotic Behavior of Recursive Algorithms

- When analyzing algorithms, recall that we only care about the <u>asymptotic behavior</u>
- Recursive algorithms are no different
- Rather than <u>solving exactly</u> the recurrence relation associated with the cost of an algorithm, it is sufficient to give an asymptotic characterization
- The main tool for doing this is the <u>master theorem</u>

Outline

- Motivation
- The Master Theorem
 - Pitfalls
 - 3 examples
- 4th Condition
 - 1 example

Master Theorem

 Let T(n) be <u>a monotonically increasing</u> function that satisfies

$$T(n) = a T(n/b) + f(n)$$

 $T(1) = c$

where $a \ge 1$, $b \ge 2$, c>0. If f(n) is $\Theta(n^d)$ where $d \ge 0$ then

$$\mathsf{T(n)} = \begin{cases} \Theta(n^d) & \text{if a < b^d} \\ \Theta(n^d \log n) & \text{If a = b^d} \\ \Theta(n^{\log_b a}) & \text{if a > b^d} \end{cases}$$

Master Theorem: Pitfalls

- You cannot use the Master Theorem if
 - -T(n) is not monotone, e.g. $T(n) = \sin(x)$
 - -f(n) is not a polynomial, e.g., $T(n)=2T(n/2)+2^n$
 - b cannot be expressed as a constant, e.g.

$$T(n) = T(\sqrt{n})$$

- Note that the Master Theorem does not solve the recurrence equation
- Does the base case remain a concern?

Master Theorem: Example 1

• Let $T(n) = T(n/2) + \frac{1}{2}n^2 + n$. What are the parameters?

$$a = 1$$

$$b = 2$$

$$d = 2$$

Therefore, which condition applies?

$$1 < 2^2$$
, case 1 applies

We conclude that

$$T(n) \subseteq \Theta(n^d) = \Theta(n^2)$$

Master Theorem: Example 2

• Let $T(n)= 2 T(n/4) + \sqrt{n} + 42$. What are the parameters?

$$a = 2$$

$$b = 4$$

$$d = 1/2$$

Therefore, which condition applies?

$$2 = 4^{1/2}$$
, case 2 applies

We conclude that

$$T(n) \in \Theta(n^d \log n) = \Theta(\log n\sqrt{n})$$

Master Theorem: Example 3

• Let T(n)=3 T(n/2) + 3/4n + 1. What are the parameters?

$$a = 3$$

$$b = 2$$

$$d = 1$$

Therefore, which condition applies?

$$3 > 2^1$$
, case 3 applies

We conclude that

$$T(n) \in \Theta(n^{\log_b a}) = \Theta(n^{\log_2 3})$$

• Note that $\log_2 3 \approx 1.584...$, can we say that $T(n) \in \Theta$ $(n^{1.584})$

No, because
$$\log_2 3 \approx 1.5849...$$
 and $n^{1.584} \notin \Theta$ ($n^{1.5849}$)

Outline

- Motivation
- The Master Theorem
 - Pitfalls
 - 3 examples
- 4th Condition
 - 1 example

'Fourth' Condition

- Recall that we cannot use the Master Theorem if f(n), the non-recursive cost, is not a polynomial
- There is a limited 4th condition of the Master
 Theorem that allows us to consider polylogarithmic functions
- Corollary: If $f(n) \in \Theta(n^{\log_b a} \log^k n)$ for some k≥0 then $T(n) \in \Theta(n^{\log_b a} \log^{k+1} n)$
- This final condition is fairly limited and we present it merely for sake of completeness.. Relax ©

'Fourth' Condition: Example

Say we have the following recurrence relation

$$T(n) = 2 T(n/2) + n log n$$

- Clearly, a=2, b=2, but f(n) is not a polynomial. However, we have $f(n) \in \Theta(n \log n)$, k=1
- Therefore by the 4th condition of the Master Theorem we can say that

$$T(n) \in \Theta(n^{\log_b a} \log^{k+1} n) = \Theta(n^{\log_2 2} \log^2 n) = \Theta(n \log^2 n)$$

Summary

- Motivation
- The Master Theorem
 - Pitfalls
 - 3 examples
- 4th Condition
 - 1 example