Introduction to Logic

Sections 1.1 and 1.2 of Rosen
Spring 2011
CSCE 235 Introduction to Discrete Structures
URL: cse.unl.edu/~cse235
All questions: cse235@cse.unl.edu
Introduction: Logic?

• We will study
 – Propositional Logic (PL)
 – First-Order Logic (FOL)

• Logic
 – is the study of the logic relationships between objects and
 – forms the basis of all mathematical reasoning and all automated reasoning
Introduction: PL?

- Propositional Logic (PL) = Propositional Calculus = Sentential Logic
- In Propositional Logic, the objects are called propositions
- **Definition**: A proposition is a statement that is either true or false, but not both
- We usually denote a proposition by a letter: p, q, r, s, ...
Outline

• Defining Propositional Logic
 – Propositions
 – Connectives
 – Precedence of Logical Operators
 – Truth tables

• Usefulness of Logic
 – Bitwise operations
 – Logic in Theoretical Computer Science (SAT)
 – Logic in Programming

• Logical Equivalences
 – Terminology
 – Truth tables
 – Equivalence rules
Introduction: Proposition

• **Definition**: The value of a proposition is called its truth value; denoted by
 – T or 1 if it is true or
 – F or 0 if it is false

• Opinions, interrogative, and imperative are not propositions

• **Truth table**

<table>
<thead>
<tr>
<th>p</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Propositions: Examples

• The following are propositions
 – Today is Monday \(M \)
 – The grass is wet \(W \)
 – It is raining \(R \)

• The following are not propositions
 – C++ is the best language \(Opinion \)
 – When is the pretest? \(Interrogative \)
 – Do your homework \(Imperative \)
Are these propositions?

- 2+2=5
- Every integer is divisible by 12
- Microsoft is an excellent company
Logical connectives

- Connectives are used to create a compound proposition from two or more propositions
 - Negation (e.g., $\neg a$ or $!a$ or \bar{a})
 - And or logical conjunction (denoted \wedge)
 - OR or logical disjunction (denoted \vee)
 - XOR or exclusive or (denoted \oplus)
 - Implication (denoted \Rightarrow or \rightarrow)
 - Biconditional (denoted \Leftrightarrow or \leftrightarrow

- We define the meaning (semantics) of the logical connectives using truth tables
Precedence of Logical Operators

• As in arithmetic, an ordering is imposed on the use of logical operators in compound propositions
• However, it is preferable to use parentheses to disambiguate operators and facilitate readability
 \[\neg p \lor q \land \neg r = (\neg p) \lor (q \land \neg r) \]
• To avoid unnecessary parenthesis, the following precedences hold:
 1. Negation (\neg)
 2. Conjunction (\land)
 3. Disjunction (\lor)
 4. Implication (\rightarrow)
 5. Biconditional (\leftrightarrow)
Logical Connective: Negation

- \(\neg p \), the negation of a proposition \(p \), is also a proposition
- Examples:
 - Today is not Monday
 - It is not the case that today is Monday, etc.
- Truth table

<table>
<thead>
<tr>
<th>(p)</th>
<th>(\neg p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Logical Connective: Logical And

- The logical connective And is true only when both of the propositions are true. It is also called a conjunction.

- Examples
 - It is raining and it is warm
 - (2+3=5) and (1<2)
 - Schroedinger’s cat is dead and Schroedinger’s cat is not dead.

- Truth table

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \land q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Logical Connective: Logical OR

• The logical **disjunction**, or logical OR, is true if one or both of the propositions are true.

• Examples
 – It is raining or it is the second lecture
 – \((2+2=5) \lor (1<2)\)
 – You may have cake or ice cream

• **Truth table**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(p \land q)</th>
<th>(p \lor q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Logical Connective: Exclusive Or

- The exclusive OR, or XOR, of two propositions is true when exactly one of the propositions is true and the other one is false.
- Example
 - The circuit is either ON or OFF but not both.
 - Let $ab<0$, then either $a<0$ or $b<0$ but not both.
 - You may have cake or ice cream, but not both.
- Truth table

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p\land q$</th>
<th>$p\lor q$</th>
<th>$p\oplus q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Logical Connective: Implication (1)

• **Definition:** Let p and q be two propositions. The implication $p \rightarrow q$ is the proposition that is false when p is true and q is false and true otherwise

 – p is called the hypothesis, antecedent, premise
 – q is called the conclusion, consequence

• **Truth table**

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \land q$</th>
<th>$p \lor q$</th>
<th>$p \oplus q$</th>
<th>$p \rightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Logical Connective: Implication (2)

• The implication of $p \rightarrow q$ can be also read as
 – If p then q
 – p implies q
 – If p, q
 – p only if q
 – q if p
 – q when p
 – q whenever p
 – q follows from p
 – p is a sufficient condition for q (p is sufficient for q)
 – q is a necessary condition for p (q is necessary for p)
Logical Connective: Implication (3)

• Examples
 – If you buy you air ticket in advance, it is cheaper.
 – If \(x \) is an integer, then \(x^2 \geq 0 \).
 – If it rains, the grass gets wet.
 – If the sprinklers operate, the grass gets wet.
 – If \(2+2=5 \), then all unicorns are pink.
Exercise: Which of the following implications is true?

- If -1 is a positive number, then $2+2=5$

 True. The premise is obviously false, thus no matter what the conclusion is, the implication holds.

- If -1 is a positive number, then $2+2=4$

 True. Same as above.

- If $\sin x = 0$, then $x = 0$

 False. x can be a multiple of π. If we let $x=2\pi$, then $\sin x=0$ but $x \neq 0$.
 The implication “if $\sin x = 0$, then $x = k\pi$, for some k” is true.
Logical Connective: Biconditional (1)

- **Definition:** The biconditional $p \iff q$ is the proposition that is true when p and q have the same truth values. It is false otherwise.
- **Note** that it is equivalent to $(p \rightarrow q) \land (q \rightarrow p)$
- **Truth table**

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \land q$</th>
<th>$p \lor q$</th>
<th>$p \oplus q$</th>
<th>$p \Rightarrow q$</th>
<th>$p \iff q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Logical Connective: Biconditional (2)

• The biconditional $p \leftrightarrow q$ can be equivalently read as
 – p if and only if q
 – p is a necessary and sufficient condition for q
 – if p then q, and conversely
 – p iff q (Note typo in textbook, page 9, line 3)

• Examples
 – $x > 0$ if and only if x^2 is positive
 – The alarm goes off iff a burglar breaks in
 – You may have pudding iff you eat your meat
Exercise: Which of the following biconditionals is true?

• $x^2 + y^2 = 0$ if and only if $x=0$ and $y=0$
 True. Both implications hold

• $2 + 2 = 4$ if and only if $\sqrt{2} < 2$
 True. Both implications hold.

• $x^2 \geq 0$ if and only if $x \geq 0$
 False. The implication “if $x \geq 0$ then $x^2 \geq 0$” holds.
 However, the implication “if $x^2 \geq 0$ then $x \geq 0$” is false.
 Consider $x=-1$.
 The hypothesis $(-1)^2=1 \geq 0$ but the conclusion fails.
Converse, Inverse, Contrapositive

• Consider the proposition $p \rightarrow q$
 – Its converse is the proposition $q \rightarrow p$
 – Its inverse is the proposition $\neg p \rightarrow \neg q$
 – Its contrapositive is the proposition $\neg q \rightarrow \neg p$
Truth Tables

• Truth tables are used to show/define the relationships between the truth values of
 – the individual propositions and
 – the compound propositions based on them

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \land q$</th>
<th>$p \lor q$</th>
<th>$p \oplus q$</th>
<th>$p \Rightarrow q$</th>
<th>$p \Leftarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Constructing Truth Tables

• Construct the truth table for the following compound proposition

\[((p \land q) \lor \neg q)\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
p & q & p \land q & \neg q & ((p \land q) \lor \neg q) \\
\hline
0 & 0 & 0 & 1 & 1 \\
\hline
0 & 1 & 0 & 0 & 0 \\
\hline
1 & 0 & 0 & 1 & 1 \\
\hline
1 & 1 & 1 & 0 & 1 \\
\hline
\end{array}
\]
Outline

• Defining Propositional Logic
 – Propositions
 – Connectives
 – Precedence of Logical Operators
 – Truth tables
• Usefulness of Logic
 – Bitwise operations
 – Logic in Theoretical Computer Science (SAT)
 – Logic in Programming
• Logical Equivalences
 – Terminology
 – Truth tables
 – Equivalence rules
Usefulness of Logic

• Logic is more precise than natural language
 – You may have cake or ice cream.
 • Can I have both?
 – If you buy your air ticket in advance, it is cheaper.
 • Are there or not cheap last-minute tickets?

• For this reason, logic is used for hardware and software specification
 – Given a set of logic statements,
 – One can decide whether or not they are satisfiable (i.e., consistent), although this is a costly process...
Bitwise Operations

- Computers represent information as bits (binary digits)
- A bit string is a sequence of bits
- The length of the string is the number of bits in the string
- Logical connectives can be applied to bit strings of equal length
- Example

<table>
<thead>
<tr>
<th></th>
<th>0110</th>
<th>1010</th>
<th>1101</th>
</tr>
</thead>
<tbody>
<tr>
<td>0101</td>
<td>0010</td>
<td>1111</td>
<td></td>
</tr>
</tbody>
</table>

 Bitwise OR

<table>
<thead>
<tr>
<th></th>
<th>0111</th>
<th>1010</th>
<th>1111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0101</td>
<td>0010</td>
<td>1111</td>
<td></td>
</tr>
</tbody>
</table>

 Bitwise AND

<table>
<thead>
<tr>
<th></th>
<th>...</th>
</tr>
</thead>
</table>

 Bitwise XOR

<table>
<thead>
<tr>
<th></th>
<th>...</th>
</tr>
</thead>
</table>
Logic in TCS

• **What is SAT?** SAT is the problem of determining whether or not a sentence in propositional logic (PL) is satisfiable.
 – **Given:** a PL sentence
 – **Question:** Determine whether or not it is satisfiable

• Characterizing SAT as an **NP-complete** problem (complexity class) is at the foundation of Theoretical Computer Science.

• What is a PL sentence? What does satisfiable mean?
Logic in TCS: A Sentence in PL

- A **Boolean variable** is a variable that can have a value 1 or 0. Thus, Boolean variable is a proposition.
- A **term** is a Boolean variable
- A **literal** is a term or its negation
- A **clause** is a disjunction of literals
- A **sentence** in PL is a conjunction of clauses
- Example: \((a \lor b \lor \neg c \lor \neg d) \land (\neg b \lor c) \land (\neg a \lor c \lor d)\)
- A sentence in PL is **satisfiable** iff
 - we can assign a truth value
 - to each Boolean variables
 - such that the sentence evaluates to true (i.e., holds)
SAT in TCS

• Problem
 – **Given:** A sentence in PL (a complex proposition), which is
 • Boolean variables connected with logical connectives
 • Usually, as a conjunction of clauses (CNF = Conjunctive Normal Form)
 – **Question:**
 • Find an assignment of truth values (0/1)
 • That makes the sentence true, i.e. the sentence holds
Logic in Programming: Example 1

• Say you need to define a conditional statement as follows:
 – Increment x if the following condition holds
 \((x > 0 \text{ and } x < 10) \text{ or } x=10\)

• You may try: \texttt{If \ (0<x<10 \ OR \ x=10) \ x++;}

• Can’t be written in C++ or Java

• How can you modify this statement by using logical equivalence

• Answer: \texttt{If \ (x>0 \ AND \ x<=10) \ x++;}
Logic in Programming: Example 2

• Say we have the following loop

  ```
  While
  ((i<size AND A[i]>10) OR
   (i<size AND A[i]<0) OR
   (i<size AND (NOT (A[i]!=0 AND NOT (A[i]>=10)))))
  ```

• Is this a good code? Keep in mind:
 – Readability
 – Extraneous code is inefficient and poor style
 – Complicated code is more prone to errors and difficult to debug
 – Solution? Comes later...
Outline

• Defining Propositional Logic
 – Propositions
 – Connectives
 – Precedence of Logical Operators
 – Truth tables
• Usefulness of Logic
 – Bitwise operations
 – Logic in Theoretical Computer Science (SAT)
 – Logic in Programming
• Logical Equivalences
 – Terminology
 – Truth tables
 – Equivalence rules
Propositional Equivalences: Introduction

• To manipulate a set of statements (here, logical propositions) for the sake of mathematical argumentation, an important step is to replace one statement with another equivalent statement (i.e., with the same truth value)

• Below, we discuss
 – Terminology
 – Establishing logical equivalences using truth tables
 – Establishing logical equivalences using known laws (of logical equivalences)
Terminology: Tautology, Contradictions, Contingencies

• Definitions
 – A compound proposition that is always true, no matter what the truth values of the propositions that occur in it is called a **tautology**
 – A compound proposition that is always false is called a **contradiction**
 – A proposition that is neither a tautology nor a contradiction is a **contingency**

• Examples
 – A simple tautology is $p \lor \neg p$
 – A simple contradiction is $p \land \neg p$
Logical Equivalences: Definition

• **Definition**: Propositions p and q are logically equivalent if $p \leftrightarrow q$ is a tautology.

• Informally, p and q are equivalent if whenever p is true, q is true, and vice versa

• Notation: $p \equiv q$ (p is equivalent to q), $p \leftrightarrow q$, and $p \iff q$

• Alert: \equiv is not a logical connective
Logical Equivalences: Example 1

• Are the propositions \((p \rightarrow q)\) and \((\neg p \lor q)\) logically equivalent?

• To find out, we construct the truth tables for each:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(p \rightarrow q)</th>
<th>(\neg p)</th>
<th>(\neg p \lor q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The two columns in the truth table are identical, thus we conclude that
\((p \rightarrow q) \equiv (\neg p \lor q)\)
Logical Equivalences: Example 1

- Show that (Exercise 25 from Rosen)

\[(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r\]

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Propositional Equivalences: Introduction

• To manipulate a set of statements (here, logical propositions) for the sake of mathematical argumentation, an important step is to replace one statement with another equivalent statement (i.e., with the same truth value).

• Below, we discuss
 – Terminology
 – Establishing logical equivalences using truth tables
 – Establishing logical equivalences using known laws (of logical equivalences)
Logical Equivalences: Cheat Sheet

• Table of logical equivalences can be found in Rosen (page 24)

• These and other can be found in a handout on the course web page: http://www.cse.unl.edu/~cse235/files/LogicalEquivalences.pdf

• Let’s take a quick look at this Cheat Sheet
Using Logical Equivalences: Example 1

• Logical equivalences can be used to construct additional logical equivalences
• Example: Show that \((p \land q) \rightarrow q\) is a tautology

0. \((p \land q) \rightarrow q\)
1. \(\equiv \neg(p \land q) \lor q\) \hspace{1cm} \text{Implication Law on 0}
2. \(\equiv (\neg p \lor \neg q) \lor q\) \hspace{1cm} \text{De Morgan’s Law (1st) on 1}
3. \(\equiv \neg p \lor (\neg q \lor q)\) \hspace{1cm} \text{Associative Law on 2}
4. \(\equiv \neg p \lor 1\) \hspace{1cm} \text{Negation Law on 3}
5. \(\equiv 1\) \hspace{1cm} \text{Domination Law on 4}
My Advice

• Remove double implication
• Replace implication by disjunction
• Push negation inwards
• Distribute
Using Logical Equivalences: Example 2

- Example (Exercise 17)*: Show that \(\neg(p \iff q) \equiv (p \iff \neg q) \)
- Sometimes it helps to start with the second proposition \((p \iff \neg q)\)

0. \((p \iff \neg q)\)
1. \(\equiv (p \rightarrow \neg q) \land (\neg q \rightarrow p)\)
 - Equivalence Law on 0
2. \(\equiv (\neg p \lor \neg q) \land (q \lor p)\)
 - Implication Law on 1
3. \(\equiv \neg((\neg p \lor \neg q) \land (q \lor p))\)
 - Double negation on 2
4. \(\equiv \neg((\neg p \lor \neg q) \lor (q \lor p))\)
 - De Morgan’s Law...
5. \(\equiv \neg((p \land q) \lor (\neg q \land \neg p))\)
 - De Morgan’s Law
6. \(\equiv \neg((p \lor \neg q) \land (p \lor \neg p) \land (q \lor \neg q) \land (q \lor \neg p))\)
 - Distribution Law
7. \(\equiv \neg((p \lor \neg q) \land (q \lor \neg p))\)
 - Identity Law
8. \(\equiv \neg((q \rightarrow p) \land (p \rightarrow q))\)
 - Implication Law
9. \(\equiv \neg(p \iff q)\)
 - Equivalence Law

*See Table 8 (p 25) but you are not allowed to use the table for the proof
Using Logical Equivalences: Example 3

• Show that \(\neg(q \rightarrow p) \lor (p \land q) \equiv q \)

0. \(\neg(q \rightarrow p) \lor (p \land q) \)
1. \(\equiv \neg(\neg q \lor p) \lor (p \land q) \) \hspace{1cm} \text{Implication Law}
2. \(\equiv (q \land \neg p) \lor (p \land q) \) \hspace{1cm} \text{De Morgan’s Law}
 & \text{& Double negation}
3. \(\equiv (q \land \neg p) \lor (q \land p) \) \hspace{1cm} \text{Commutative Law}
4. \(\equiv q \land (\neg p \lor p) \) \hspace{1cm} \text{Distributive Law}
5. \(\equiv q \land 1 \) \hspace{1cm} \text{Identity Law}
 \hspace{1cm} \text{Identity Law}

\(\equiv q \)
Proving Logical Equivalences: Summary

• Proving two PL sentences A,B are equivalent using $\text{TT} + \text{EL}$

 1. Verify that the 2 columns of A, B in the truth table are the same (i.e., A,B have the same models)
 2. Verify that the column of $(A \rightarrow B \land B \rightarrow A)$ in the truth table has all-1 entries (it is a tautology)
 3. Put A,B in CNF, they should be the same
 • Sequence of equivalence laws: Biconditional, implication, moving negation inwards, distributivity
 4. Apply a sequence of inference laws
 • Starting from one sentence, usually the most complex one,
 • Until reaching the second sentence
 • Typical sequence: Biconditional, implication, moving negation inwards, distributivity
Logic in Programming: Example 2 (revisited)

• Recall the loop
 While
 ((i<size AND A[i]>10) OR
 (i<size AND A[i]<0) OR
 (i<size AND (NOT (A[i]!=0 AND NOT (A[i]>=10)))))

• Now, using logical equivalences, simplify it!

• Using De Morgan’s Law and Distributivity
 While ((i<size) AND
 ((A[i]>10 OR A[i]<0) OR
 (A[i]==0 OR A[i]>=10)))

• Noticing the ranges of the 4 conditions of A[i]
 While ((i<size) AND (A[i]>=10 OR A[i]<=0))
Programming Pitfall Note

• In C, C++ and Java, applying the commutative law is not such a good idea.

• For example, consider accessing an integer array A of size n:

```c
if (i<n && A[i]==0) i++;
```

is not equivalent to

```c
if (A[i]==0 && i<n) i++;
```