Induction

Sections 4.1 and 4.2 of Rosen

Spring 2011

CSCE 235 Introduction to Discrete Structures

Course web-page: cse.unl.edu/~cse235

Questions: cse235@cse.unl.edu

Outline

- Motivation
- What is induction?
 - Viewed as: the Well-Ordering Principle, Universal Generalization
 - Formal Statement
 - 6 Examples
- Strong Induction
 - Definition
 - Examples: decomposition into product of primes, gcd

Motivation

- How can we prove the following proposition?
 ∀x∈S P(x)
- For a finite set $S=\{s_1, s_2, ..., s_n\}$, we can prove that P(x) holds for each element because of the equivalence $P(s_1) \wedge P(s_2) \wedge ... \wedge P(s_n)$
- For an infinite set, we can try to use <u>universal</u> generalization
- Another, more sophisticated way is to use <u>induction</u>

What Is Induction?

- If a statement P(n₀) is true for some nonnegative integer say n₀=1
- Suppose that we are able to prove that if P(k) is true for $k \ge n_0$, then P(k+1) is also true

$$P(k) \Rightarrow P(k+1)$$

• It follows from these two statement that P(n) is true for all $n \ge n_0$, that is

$$\forall n \ge n_0 P(n)$$

 The above is the basis of <u>induction</u>, a widely used proof technique and a very powerful one

The Well-Ordering Principle

- Why induction is a legitimate proof technique?
- At its heart, induction is the Well Ordering Principle
- Theorem: <u>Principle of Well Ordering</u>. Every nonempty set of nonnegative integers has a least element
- Since, every such has a least element, we can form a basis case (using the least element as the basis case n_0)
- We can then proceed to establish that the set of integers n≥n₀ such that P(n) is false is actually <u>empty</u>
- Thus, induction (both 'weak' and 'strong' forms) are <u>logical</u> <u>equivalences</u> of the well-ordering principle.

Another View

- To look at it in another way, assume that the statements
 - (1) $P(n_o)$
 - (2) $P(k) \Rightarrow P(k+1)$

are true. We can now use a form of <u>universal generalization</u> as follows

- Say we choose an element c of the UoD. We wish to establish that P(c) is true. If $c=n_0$, then we are done
- Otherwise, we apply (2) above to get

$$P(n_0) \Rightarrow P(n_0+1), P(n_0+1) \Rightarrow P(n_0+2), P(n_0+1) \Rightarrow P(n_0+3), ..., P(c-1) \Rightarrow P(c)$$

Via a finite number of steps $(c-n_0)$ we get that P(c) is true.

• Because c is arbitrary, the universal generalization is established and $\forall n \ge n_0 P(n)$

Outline

- Motivation
- What is induction?
 - Viewed as: the Well-Ordering Principle, Universal Generalization
 - Formal Statement
 - 6 Examples
- Strong Induction
 - Definition
 - Examples: decomposition into product of primes, gcd

Induction: Formal Definition (1)

- Theorem: <u>Principle of Mathematical Induction</u>
 Given a statement P concerning the integer n, suppose
 - 1. P is true for some particular integer n_0 , $P(n_0)=1$
 - 2. If P is true for some particular integer $k \ge n_0$ then it is true for k+1: $P(k) \rightarrow P(k+1)$

Then P is true for all integers $n \ge n_0$, that is

$$\forall n \ge n_0 P(n)$$
 is true

Induction: Formal Definition (2)

- Showing that $P(n_0)$ holds for some initial integer n_0 is called the <u>Basis Step</u>
- The assumption P(k) is called the inductive hypothesis
- Showing the implication $P(k) \rightarrow P(k+1)$ for every $k \ge n_0$ is called the Inductive Step
- Together, induction can be expressed as an inference rule:

$$(P(n_0) \land (\forall k \ge n_0 P(k) \rightarrow P(k+1)) \rightarrow \forall n \ge n_0 P(n)$$

Steps

- 1. Form the general statement
- 2. Form and verify the base case (basis step)
- 3. Form the inductive hypothesis
- 4. Prove the inductive step

Example A (1)

- Prove that $n^2 \le 2^n$ for all $n \ge 5$ using induction
- We formalize the statement $P(n)=(n^2 \le 2^n)$
- Our <u>basis case</u> is for n=5. We directly verify that

$$25 = 5^2 \le 2^5 = 32$$

so P(5) is true and thus the basic step holds

We need now to perform the inductive step

Example A (2)

- Assume P(k) holds (the inductive hypothesis). Thus, $k^2 \le 2^k$
- Now, we need to prove the inductive step. For all k≥5,

$$(k+1)^2 = k^2+2k+1 < k^2+2k+k$$
 (because $k \ge 5 > 1$)
 $< k^2+3k < k^2+k\cdot k$ (because $k \ge 5 > 3$)
 $< k^2+k^2=2k^2$

- Using the inductive hypothesis $(k^2 \le 2^k)$, we get $(k+1)^2 < 2k^2 \le 2 \cdot 2^k = 2^{k+1}$
- Thus, P(k+1) holds

Example B (1)

- Prove that for any $n \ge 1$, $\sum_{i=1}^{n} (i^2) = n(n+1)(2n+1)/6$
- The basis case is easily verified $1^2=1=1(1+1)(2+1)/6$
- We assume that P(k) holds for some $k \ge 1$, so

$$\Sigma_{i=1}^{k}$$
 (i²) = k(k+1)(2k+1)/6

We want to show that P(k+1) holds, that is

$$\Sigma_{i=1}^{k+1}$$
 (i²) = (k+1)(k+2)(2k+3)/6

We rewrite this sum as

$$\sum_{i=1}^{k+1} (i^2) = 1^2 + 2^2 + ... + k^2 + (k+1)^2 = \sum_{i=1}^{k} (i^2) + (k+1)^2$$

Example B (2)

• We replace $\sum_{i=1}^{k}$ (i²) by its value from the inductive hypothesis

$$\Sigma_{i=1}^{k+1} (i^2) = \sum_{i=1}^{k} (i^2) + (k+1)^2$$

$$= k(k+1)(2k+1)/6 + (k+1)^2$$

$$= k(k+1)(2k+1)/6 + 6(k+1)^2/6$$

$$= (k+1)[k(2k+1)+6(k+1)]/6$$

$$= (k+1)[2k^2+7k+6]/6$$

$$= (k+1)(k+2)(2k+3)/6$$

- Thus, we established that $P(k) \rightarrow P(k+1)$
- Thus, by the principle of mathematical induction we have

$$\forall n \ge 1, \ \Sigma_{i=1}^{n} (i^2) = n(n+1)(2n+1)/6$$

Example C (1)

- Prove that for any integer n≥1, 2²ⁿ-1 is divisible by 3
- Define P(n) to be the statement 3 | (2²ⁿ-1)
- We note that for the basis case n=1 we do have P(1)

$$2^{2\cdot 1}-1 = 3$$
 is divisible by 3

• Next we assume that P(k) holds. That is, there exists some integer u such that

$$2^{2k}-1=3u$$

 We must prove that P(k+1) holds. That is, 2^{2(k+1)}-1 is divisible by 3

Example C (2)

- Note that: $2^{2(k+1)} 1 = 2^2 2^{2k} 1 = 4 \cdot 2^{2k} 1$
- The inductive hypothesis: $2^{2k} 1 = 3u \Rightarrow 2^{2k} = 3u + 1$
- Thus: $2^{2(k+1)} 1 = 4 \cdot 2^{2k} 1 = 4(3u+1) 1$ = 12u+4-1= 12u+3= 3(4u+1), a multiple of 3
- We conclude, by the principle of mathematical induction, for any integer n≥1, 2²ⁿ-1 is divisible by 3

Example D

- Prove that n! > 2ⁿ for all n≥4
- The basis case holds for n=4 because $4!=24>2^4=16$
- We assume that k! > 2^k for some integer k≥4 (which is our inductive hypothesis)
- We must prove the P(k+1) holds

$$(k+1)! = k! (k+1) > 2^k (k+1)$$

• Because $k \ge 4$, $k+1 \ge 5 > 2$, thus

$$(k+1)! > 2^k (k+1) > 2^k \cdot 2 = 2^{k+1}$$

 Thus by the principal of mathematical induction, we have n! > 2ⁿ for all n≥4

Example E: Summation

- Show that $\Sigma_{i=1}^{n} (i^3) = (\Sigma_{i=1}^{n} i)^2$ for all $n \ge 1$
- The basis case is trivial: for n = 1, $1^3 = 1^2$
- The inductive hypothesis assumes that for some n≥1 we have Σ_{i=1} ^k (i³) = (Σ_{i=1} ^k i)²
- We now consider the summation for (k+1): $\Sigma_{i=1}^{k+1}$ (i³) $= (\Sigma_{i=1}^{k} i)^2 + (k+1)^3 = (k(k+1)/2)^2 + (k+1)^3$ $= (k^2(k+1)^2 + 4(k+1)^3)/2^2 = (k+1)^2(k^2 + 4(k+1))/2^2$ $= (k+1)^2(k^2 + 4k + 4)/2^2 = (k+1)^2(k+2)^2/2^2$ $= ((k+1)(k+2)/2)^2$
- Thus, by the PMI, the equality holds

Example F: Derivatives

- Show that for all $n \ge 1$ and $f(x) = x^n$, we have $f'(x) = nx^{n-1}$
- Verifying the basis case for n=1:

$$f'(x) = \lim_{h \to 0} (f(x_0 + h) - f(x_0)) / h$$
$$= \lim_{h \to 0} ((x_0 + h)^1 - (x_0^1)) / h = 1 = 1 \cdot x^0$$

- Now, assume that the inductive hypothesis holds for some k, $f(x) = x^k$, we have $f'(x) = kx^{k-1}$
- Now, consider $f_2(x) = x^{k+1} = x^k \cdot x$
- Using the product rule: $f_2(x) = (x^k)^2 \cdot x + (x^k) \cdot x^2$
- Thus, $f'_2(x) = kx^{k-1} \cdot x + x^k \cdot 1 = kx^k + x^k = (k+1)x^k$

The **Bad** Example: Example G

- Consider the proof for: All of you will receive the same grade
- Let P(n) be the statement: "Every set of n students will receive the same grade"
- Clearly, P(1) is true. So the basis case holds
- Now assume P(k) holds, the inductive hypothesis
- Given a group of k students, apply P(k) to {s₁, s₂, ..., s_k}
- Now, separately apply the inductive hypothesis to the subset $\{s_2, s_3, ..., s_{k+1}\}$
- Combining these two facts, we get {s₁, s₂, ..., s_{k+1}}. Thus, P(k+1) holds.
- Hence, P(n) is true for all students

Example G: Where is the Error?

- The mistake is not the basis case: P(1) is true
- Also, it is the case that, say, $P(73) \Rightarrow P(74)$
- So, this is cannot be the mistake
- The error is in $P(1) \Rightarrow P(2)$, which cannot hold
- We cannot combine the two inductive hypotheses to get P(2)

Outline

- Motivation
- What is induction?
 - Viewed as: the Well-Ordering Principle, Universal Generalization
 - Formal Statement
 - 6 Examples
- Strong Induction
 - Definition
 - Examples: decomposition into product of primes, gcd

Strong Induction

- Theorem: Principle of Mathematical Induction (Strong Form)
 Given a statement P concerning an integer n, suppose
 - 1. P is true for some particular integer n_0 , $P(n_0)=1$
 - If k≥n₀ is any integer and P is true for all integers m in the range n₀≤m<k, then it is true also for k

Then, P is true for all integers $n \ge n_0$, i.e.

$$\forall$$
 n \geq n₀ P(n) holds

MPI and its Strong Form

- Despite the name, the strong form of PMI is not a stronger proof technique than PMI
- In fact, we have the following Lemma
- Lemma: The following are equivalent
 - The Well Ordering Principle
 - The Principle of Mathematical Induction
 - The Principle of Mathematical Induction, Strong Form

Strong Form: Example A (1)

- Fundamental Theorem of Arithmetic (page 211): For any integer n≥2 can be written uniquely as
 - A prime or
 - As the product of primes
- Prove using the strong form of induction to
- Definition (page 210)
 - Prime: A positive integer p greater than 1 is called prime iff the only positive factors of p are 1 and p.
 - Composite: A positive integer that is greater than 1 and is not prime is called composite
- According to the definition, 1 is not a prime

Strong Form: Example A (2)

- 1. Let P(n) be the statement: "n is a prime or can be written uniquely as a product of primes."
- 2. The basis case holds: P(2)=2 and 2 is a prime.

Strong Form: Example A (3)

3. We make our inductive hypothesis. Here we assume that the predicate P holds for all integers less than some integer k≥2, i.e., we assume that:

$$P(2) \wedge P(3) \wedge P(4) \wedge ... \wedge P(k)$$
 is true

- 4. We want to show that this implies that P(k+1) holds. We consider two cases:
 - k+1 is prime, then P(k+1) holds. We are done.
 - k+1 is a composite. k+1 has two factors u,v, $2 \le u$,v < k+1 such that k+1=u·v By the inductive hypothesis $u=\Pi_i$ p_i v= Π_j p_j , and p_i , p_j prime Thus, k+1= Π_i p_i Π_j p_i

So, by the strong form of PMI, P(k+1) holds

QED

Strong Form: Example B (1)

Notation:

- gcd(a,b): the greatest common divisor of a and b
 - Example: gcd(27, 15)=3, gcd(35,28)=7
- $gcd(a,b)=1 \Leftrightarrow a, b are mutually prime$
 - Example: gcd(15,14)=1, gcd(35,18)=1
- Lemma: If $a,b \in \mathbb{N}$ are such that gcd(a,b)=1 then there are integers s,t such that

$$gcd(a,b)=1=sa+tb$$

 Question: Prove the above lemma using the strong form of induction

Background Knowledge

- Prove that: gcd(a,b)= gcd(a,b-a)
- Proof: Assume gcd(a,b)=k and gcd(a,b-a)=k'
 - \circ gcd(a,b)=k \Rightarrow k divides a and b
 - \Rightarrow k divides a and (b-a) \Rightarrow k divides k'
 - \circ gcd(a,b-a)=k' \Rightarrow k' divides a and b-a
 - \Rightarrow k' divides a and a+(b-a)=b \Rightarrow k' divides k
 - \circ (k divides k') and (k' divides k) \Rightarrow k = k'
 - \Rightarrow gcd(a,b)= gcd(a,b-a)

(Lame) Alternative Proof

- Prove that $gcd(a,b)=1 \Rightarrow gcd(a,b-a)=1$
- We prove the contrapositive
 - Assume gcd(a,b-a)≠ 1 \Rightarrow ∃ k∈Z, k≠1 k divides a and b-a \Rightarrow ∃ m,n∈Z a=km and b-a=kn
 - \Rightarrow a+(b-a)=k(m+n) \Rightarrow b=k(m+n) \Rightarrow k divides b
 - -k ≠ 1 divides a and divides b \Rightarrow gcd(a,b) ≠ 1
- But, don't prove a special case when you have the more general one (see previous slide..)

Strong Form: Example B (2)

1. Let P(n) be the statement

$$(a,b \in N) \land (gcd(a,b)=1) \land (a+b=n) \Rightarrow \exists s,t \in Z, sa+tb=1$$

- 2. Our basis case is when n=2 because a=b=1. For s=1, t=0, the statement P(2) is satisfied (sa+tb=1.1+1.0=1)
- 3. We form the inductive hypothesis P(k):
 - For $k \in \mathbb{N}$, $k \ge 2$
 - For all i, 2≤i≤k P(i) holds
 - For a,b $\in N$, (gcd(a,b)=1) \land (a+b=i) \exists s,t $\in Z$, sa+tb=1
- 4. Given the inductive hypothesis, we prove P(a+b = k+1)We consider three cases: a=b, a<b, a>b

Strong Form: Example B (3)

Case 1: a=b

• In this case: gcd(a,b) = gcd(a,a) = a = 1Because a=b = By definition = 1See assumption

gcd(a,b)=1 ⇒ a=b=1
 ⇒ We have the basis case,
 P(a+b)=P(2), which holds

Strong Form: Example B (4)

Case 2: a<b

- $b > a \Rightarrow b a > 0$. So gcd(a,b)=gcd(a,b-a)=1
- Further: $2 \le a + (b-a) = (a+b)-a = (k+1)-a \le k \Rightarrow a + (b-a) \le k$
- Applying the inductive hypothesis P(a+(b-a))(a,(b-a) $\in N$) \land (gcd(a,b-a)=1) \land (a+(b-a)=b) $\Rightarrow \exists s_0, t_0 \in Z, s_0a+t_0(b-a)=1$
- Thus, $\exists s_0, t_0 \in \mathbb{Z}$ such that $(s_0-t_0)a + t_0b=1$
- So, for s,t $\in \mathbb{Z}$ where $s=s_0-t_0$, $t=t_0$ we have sa+tb=1
- Thus, P(k+1) is established for this case

Strong Form: Example B (5)

Case 2: a>b

- This case is completely symmetric to case 2
- We use a-b instead of a-b
- Because the three cases handle every possibility, we have established that P(k+1) holds
- Thus, by the PMI strong form, the Lemma holds. **QED**

Revised Template

In order to prove by induction

Some mathematical statement

 \forall n \geq n₀ some statement

- Follow the template
 - 1. State a propositional predicate

P(n): some statement involving n

- 2. Form and verify the basis case (basis step)
- 3. Form the inductive hypothesis (assume P(k))
- 4. Prove the inductive step (prove P(k+1))

Summary

- Motivation
- What is induction?
 - Viewed as: the Well-Ordering Principle, Universal Generalization
 - Formal Statement
 - 6 Examples
- Strong Induction
 - Definition
 - Examples: decomposition into product of primes, gcd