Combinatorics

Section 5.1—5.6 7.5—7.6 of Rosen

Spring 2011

CSCE 235 Introduction to Discrete Structures

Course web-page: cse.unl.edu/~cse235

Questions: cse235@cse.unl.edu

Motivation

- Combinatorics is the study of collections of objects.
 Specifically, <u>counting</u> objects, <u>arrangement</u>, <u>derangement</u>, etc. along with their mathematical properties
- Counting objects is important in order to analyze algorithms and compute discrete probabilities
- Originally, combinatorics was motivated by gambling: counting configurations is essential to elementary probability
 - A simple example: How many arrangements are there of a deck of 52 cards?
- In addition, combinatorics can be used as a proof technique
 - A <u>combinatorial proof</u> is a proof method that uses counting arguments to prove a statement

Outline

- Introduction
- Counting:
 - Product rule, sum rule, Principal of Inclusion Exclusion (PIE)
 - Application of PIE: Number of onto functions
- Pigeonhole principle
 - Generalized, probabilistic forms
- Permutations
- Combinations
- Binomial Coefficients
- Generalizations
 - Combinations with repetitions, permutations with indistinguishable objects
- Algorithms
 - Generating combinations (1), permutations (2)
- More Examples

Product Rule

- If two events are <u>not</u> mutually exclusive (that is we do them separately), then we apply the product rule
- **Theorem**: Product Rule

Suppose a procedure can be accomplished with two <u>disjoint</u> subtasks. If there are

- n₁ ways of doing the first task and
- n₂ ways of doing the second task,
 then there are n₁.n₂ ways of doing the overall procedure

Sum Rule (1)

- If two events <u>are</u> mutually exclusive, that is, they cannot be done at the same time, then we must apply the sum rule
- Theorem: Sum Rule. If
 - an event e₁ can be done in n₁ ways,
 - an event e₂ can be done in n₂ ways, and
 - $-e_1$ and e_2 are mutually exclusive then the number of ways of both events occurring is $n_1 + n_2$

Sum Rule (2)

 There is a natural generalization to any <u>sequence</u> of m tasks; namely the number of ways m mutually events can occur

$$n_1 + n_2 + ... + n_{m-1} + n_m$$

• We can give another formulation in terms of sets. Let A_1 , A_2 , ..., A_m be <u>pairwise disjoint sets</u>. Then

$$|A_1 \cup A_2 \cup ... \cup A_m| = |A_1| \cup |A_2| \cup ... \cup |A_m|$$

(In fact, this is a special case of the general Principal of Inclusion-Exclusion (PIE))

Principle of Inclusion-Exclusion (PIE)

- Say there are two events, e_1 and e_2 , for which there are n_1 and n_2 possible outcomes respectively.
- Now, say that only <u>one</u> event can occur, not both
- In this situation, we cannot apply the sum rule. Why?
 - ... because we would be over counting the number of possible outcomes.
- Instead we have to count the number of possible outcomes of e_1 and e_2 minus the number of possible outcomes in common to both; i.e., the number of ways to do both tasks
- If again we think of them as sets, we have

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$$

PIE (2)

- More generally, we have the following
- Lemma: Let A, B, be subsets of a finite set U. Then
 - 1. $|A \cup B| = |A| + |B| |A \cap B|$
 - 2. $|A \cap B| \le \min\{|A|, |B|\}$
 - 3. $|A \setminus B| = |A| |A \cap B| \ge |A| |B|$
 - 4. |A| = |U| |A|
 - 5. $|A \oplus B| = |A \cup B| |A \cap B| = |A| + |B| 2|A \cap B| = |A \setminus B| + |B|$
 - 6. $|A \times B| = |A| \times |B|$

PIE: Theorem

• **Theorem**: Let A₁,A₂, ...,A_n be finite sets, then

$$\begin{split} |A_{1} \cup A_{2} \cup ... \cup A_{n}| &= \Sigma_{i} |A_{i}| \\ &- \Sigma_{i < j} |A_{i} \cap A_{j}| \\ &+ \Sigma_{i < j < k} |A_{i} \cap A_{j} \cap A_{k}| \\ &- ... \\ &+ (-1)^{n+1} |A_{1} \cap A_{2} \cap ... \cap A_{n}| \end{split}$$

Each summation is over

- all i,
- pairs i,j with i<j,
- triples with i<j<k, etc.

PIE Theorem: Example 1

• To illustrate, when n=3, we have

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3|$$

$$- [|A_1 \cap A_2| + |A_1 \cap A_3| + |A_2 \cap A_3|]$$

$$+ |A_1 \cap A_2 \cap A_3|$$

PIE Theorem: Example 2

• To illustrate, when n=4, we have

$$\begin{split} |\mathsf{A}_{1} \cup \mathsf{A}_{2} \cup \mathsf{A}_{3} \cup \mathsf{A}_{4}| &= |\mathsf{A}_{1}| + |\mathsf{A}_{2}| + |\mathsf{A}_{3}| + |\mathsf{A}_{4}| \\ &- [|\mathsf{A}_{1} \cap \mathsf{A}_{2}| + |\mathsf{A}_{1} \cap \mathsf{A}_{3}| + |\mathsf{A}_{1} \cap \mathsf{A}_{4}| \\ &+ |\mathsf{A}_{2} \cap \mathsf{A}_{3}| + |\mathsf{A}_{2} \cap \mathsf{A}_{4}| + |\mathsf{A}_{3} \cap \mathsf{A}_{4}|] \\ &+ [|\mathsf{A}_{1} \cap \mathsf{A}_{2} \cap \mathsf{A}_{3}| + |\mathsf{A}_{1} \cap \mathsf{A}_{2} \cap \mathsf{A}_{4}| \\ &+ |\mathsf{A}_{1} \cap \mathsf{A}_{3} \cap \mathsf{A}_{4}| + |\mathsf{A}_{2} \cap \mathsf{A}_{3} \cap \mathsf{A}_{4}|] \\ &- |\mathsf{A}_{1} \cap \mathsf{A}_{2} \cap \mathsf{A}_{3} \cap \mathsf{A}_{4}| \end{split}$$

Application of PIE: Example A (1)

- How many integers between 1 and 300 (inclusive) are
 - Divisible by at least one of 3,5,7?
 - Divisible by 3 and by 5 but not by 7?
 - Divisible by 5 but by neither 3 or 7?
- Let

```
A = \{n \in Z \mid (1 \le n \le 300) \land (3 \mid n)\}
B = \{n \in Z \mid (1 \le n \le 300) \land (5 \mid n)\}
C = \{n \in Z \mid (1 \le n \le 300) \land (7 \mid n)\}
```

How big are these sets? We use the floor function

$$|A| = [300/3] = 100$$

 $|B| = [300/5] = 60$
 $|C| = [300/7] = 42$

Application of PIE: Example A (2)

• How many integers between 1 and 300 (inclusive) are divisible by at least one of 3,5,7?

Answer: |A∪B ∪C|

By the principle of inclusion-exclusion

$$|A \cup B \cup C| = |A| + |B| + |C| - [|A \cap B| + |A \cap C| + |B \cap C|] + |A \cap B \cap C|$$

How big are these sets? We use the floor function

$$|A| = [300/3] = 100$$
 $|A \cap B| = [300/15] = 20$
 $|B| = [300/5] = 60$ $|A \cap C| = [300/21] = 100$
 $|C| = [300/7] = 42$ $|B \cap C| = [300/35] = 8$
 $|A \cap B \cap C| = [300/105] = 2$

• Therefore:

$$|A \cup B \cup C| = 100 + 60 + 42 - (20+14+8) + 2 = 162$$

Application of PIE: Example A (3)

How many integers between 1 and 300 (inclusive) are divisible by 3 and by
 5 but not by 7?

Answer: $|(A \cap B)\setminus C|$

By the definition of set-minus

$$|(A \cap B)\setminus C| = |A \cap B| - |A \cap B \cap C| = 20 - 2 = 18$$

Knowing that

$$|A| = [300/3] = 100$$
 $|A \cap B| = [300/15] = 20$
 $|B| = [300/5] = 60$ $|A \cap C| = [300/21] = 100$
 $|C| = [300/7] = 42$ $|B \cap C| = [300/35] = 8$
 $|A \cap B \cap C| = [300/105] = 2$

Application of PIE: Example A (4)

 How many integers between 1 and 300 (inclusive) are divisible by 5 but by neither 3 or 7?

Answer:
$$|B\setminus(A\cup C)| = |B| - |B\cap(A\cup C)|$$

Distributing B over the intersection

$$|B \cap (A \cup C)| = |(B \cap A) \cup (B \cap C)|$$

= $|B \cap A| + |B \cap C| - |(B \cap A) \cap (B \cap C)|$
= $|B \cap A| + |B \cap C| - |B \cap A \cap C|$
= $20 + 8 - 2 = 26$

Knowing that

$$|A| = [300/3] = 100$$
 $|A \cap B| = [300/15] = 20$
 $|B| = [300/5] = 60$ $|A \cap C| = [300/21] = 100$
 $|C| = [300/7] = 42$ $|B \cap C| = [300/35] = 8$
 $|A \cap B \cap C| = [300/105] = 2$

Application of PIE: #Surjections

(Section 7.6)

- The principle of inclusion-exclusion can be used to count the number of onto (surjective) functions
- Theorem: Let A, B be non-empty sets of cardinality m,n with m≥n. Then there are

$$n^{m} - \binom{n}{1}(n-1)^{m} + \binom{n}{2}(n-2)^{m} - \dots + (-1)^{n-1}\binom{n}{n-1}1^{m}$$

i.e.
$$\sum_{i=0}^{n-1} (-1)^i \binom{n}{i} (n-i)^m$$
 onto functions $f: A \to B$.

\${n \choose i}\$

See textbook, Section 7.6 page 509

#Surjections: Example

- How many ways of giving out 6 pieces of candy to 3 children if each child must receive at least one piece?
- This problem can be modeled as follows:
 - Let A be the set of candies, |A|=6
 - Let B be the set of children, |B|=3
 - The problem becomes "find the number of surjective mappings from A to B" (because each child must receive at least one candy)
- Thus the number of ways is thus (m=6, n=3)

$$3^{6} - {3 \choose 1} (3-1)^{6} + {3 \choose 2} (3-2)^{6} = 540$$

Outline

- Introduction
- Counting:
 - Product rule, sum rule, Principal of Inclusion Exclusion (PIE)
 - Application of PIE: Number of onto functions
- Pigeonhole principle
 - Generalized, probabilistic forms
- Permutations
- Combinations
- Binomial Coefficients
- Generalizations
 - Combinations with repetitions, permutations with indistinguishable objects
- Algorithms
 - Generating combinations (1), permutations (2)
- More Examples

Pigeonhole Principle (1)

- If there are more pigeons than there are roots (pigeonholes), for at least one pigeonhole, more than one pigeon must be in it
- Theorem: If k+1 or more objects are placed in k boxes, then there is at least one box containing two or more objects
- This principal is a fundamental tool of elementary discrete mathematics.
- It is also known as the <u>Dirichlet Drawer Principle</u> or <u>Dirichlet Box Pinciple</u>

Pigeonhole Principle (2)

- It is <u>seemingly</u> simple but <u>very</u> powerful
- The difficulty comes in where and how to apply it
- Some simple applications in Computer Science
 - Calculating the probability of hash functions having a collision
 - Proving that there can be no lossless compression algorithm compressing all files to within a certain ration
- Lemma: For two finite sets A,B there exists a bijection f:A→B if and only if |A|=|B|

Generalized Pigeonhole Principle (1)

 Theorem: If N objects are placed into k boxes then there is at least one box containing at least

$$\left\lceil \frac{N}{k} \right\rceil$$

• **Example**: In any group of 367 or more people, at least two of them must have been born on the same date.

Generalized Pigeonhole Principle (2)

- A probabilistic generalization states that
 - if n objects are randomly put into m boxes
 - with uniform probability
 - (i.e., each object is place in a given box with probability 1/m)
 - then at least one box will hold more than one object with probability

$$1 - \frac{m!}{(m-n)!m^n}$$

Generalized Pigeonhole Principle: Example

- Among 10 people, what is the probability that two or more will have the same birthday?
 - Here n=10 and m=365 (ignoring leap years)
 - Thus, the probability that two will have the same birthday is

$$1 - \frac{365!}{(365 - 10)!365^{10}} \approx 0.1169$$

So, less than 12% probability

Pigeonhole Principle: Example A (1)

- Show that
 - in a room of n people with certain acquaintances,
 - some pair must have the same number of acquaintances
- Note that this is equivalent to showing that any symmetric, irreflexive relation on n elements must have two elements with the same number of relations
- Proof: by contradiction using the pigeonhole principle
- Assume, to the contrary, that every person has a different number of acquaintances: 0, 1, 2, ..., n-1 (no one can have n acquaintances because the relation is irreflexive).
- There are n possibilities, we have n people, we are not done

Pigeonhole Principle: Example A (2)

- Assume, to the contrary, that every person has a different number of acquaintances: 0, 1, 2, ..., n-1 (no one can have n acquaintances because the relation is irreflexive).
- There are n possibilities, we have n people, we are not done 🕾
- We need to use the fact that acquaintanceship is a symmetric irreflexive relation
- In particular, some person knows 0 people while another knows
 n-1 people
- Thus by the pigeonhole principle (10 people and 9 possibilities) at least two people have to the same number of acquaintances

CSCE 235 Combinatorics 25

Pigeonhole Principle: Example B

- **Example**: Say, 30 buses are to transport 2000 Cornhusker fans to Colorado. Each bus has 80 seats.
- Show that
 - One of the buses will have 14 empty seats
 - One of the buses will carry at least 67 passengers
- One of the buses will have 14 empty seats
 - Total number of seats is 80.30=2400
 - Total number of empty seats is 2400-2000=400
 - By the pigeonhole principle: 400 empty seats in 30 buses, one must have [400/30] = 14 empty seats
- One of the buses will carry at least 67 passengers
 - By the pigeonhole principle: 2000 passengers in 30 buses, one must have $\lceil 2000/30 \rceil = 67$ passengers

Outline

- Introduction
- Counting:
 - Product rule, sum rule, Principal of Inclusion Exclusion (PIE)
 - Application of PIE: Number of onto functions
- Pigeonhole principle
 - Generalized, probabilistic forms
- Permutations
- Combinations
- Binomial Coefficients
- Generalizations
 - Combinations with repetitions, permutations with indistinguishable objects
- Algorithms
 - Generating combinations (1), permutations (2)
- More Examples

27

Permutations

- A <u>permutation</u> of a set of distinct objects is an ordered arrangement of these objects.
- An ordered arrangement of r elements of a set of n elements is called an rpermutation
- **Theorem**: The number of r permutations of a set of n distinct elements is

$$P(n,r) = \prod_{i=0}^{r-1} (n-i) = n(n-1)(n-2)\cdots(n-r+1)$$

It follows that

$$P(n,r) = \frac{n!}{(n-r)!}$$

In particular

$$P(n,n) = n!$$

 Note here that <u>the order is important</u>. It is necessary to distinguish when the order matters and it does not

Application of PIE and Permutations: Derangements (I) (Section 7.6)

Consider the hat-check problem

- Given
 - An employee checks hats from n customers
 - However, s/he forgets to tag them
 - When customers check out their hats, they are given one at random

Question

 What is the probability that no one will get their hat back?

Application of PIE and Permutations: Derangements (II)

- The hat-check problem can be modeled using <u>derangements</u>: permutations of objects such that <u>no</u> element is in its original position
 - Example: 21453 is a derangement of 12345 but 21543 is not
- The number of derangements of a set with n elements is

$$D_n = n! \left[1 - \frac{1}{1!} + \frac{2}{2!} - \frac{3}{3!} + \dots (-1)^n \frac{1}{n!} \right]$$

- Thus, the answer to the hatcheck problem is $\frac{D_n}{n!}$
- Note that $e^{-1} = \left[1 \frac{1}{1!} + \frac{2}{2!} \frac{3}{3!} + \dots (-1)^n \frac{1}{n!}\right]$
- Thus, the probability of the hatcheck problem converges

$$\lim_{n \to \infty} \frac{D_n}{n!} = e^{-1} \approx 0.368$$

Permutations: Example A

- How many pairs of dance partners can be selected from a group of 12 women and 20 men?
 - The first woman can partner with any of the 20 men, the second with any of the remaining 19, etc.
 - To partner all 12 women, we have

$$P(20,12) = 20!/8! = 9.10.11...20$$

Permutations: Example B

- In how many ways can the English letters be arranged so that there are exactly 10 letters between a and z?
 - The number of ways is P(24,10)
 - Since we can choose either a or z to come first, then there are 2P(24,10) arrangements of the 12-letter block
 - For the remaining 14 letters, there are P(15,15)=15!
 possible arrangements
 - In all there are 2P(24,10).15! arrangements

Permutations: Example C (1)

- How many permutations of the letters a, b, c, d, e, f, g contain neither the pattern bge nor eaf?
 - The total number of permutations is P(7,7)=7!
 - If we fix the pattern bge, then we consider it as a single block. Thus, the number of permutations with this pattern is P(5,5)=5!
 - If we fix the pattern bge, then we consider it as a single block. Thus, the number of permutations with this pattern is P(5,5)=5!
 - Fixing the patter eaf, we have the same number: 5!
 - Thus, we have (7! 2.5!). Is this correct?
 - No! we have subtracted too many permutations: ones containing both eaf and bfe.

Permutations: Example C (2)

- There are two cases: (1) eaf comes first, (2) bge comes first
- Are there any cases where eaf comes before bge?
- No! The letter e cannot be used twice
- If bge comes first, then the pattern must be bgeaf, so we have 3 blocks or 3! arrangements
- Altogether, we have

$$7! - 2.(5!) + 3! = 4806$$

Outline

- Introduction
- Counting:
 - Product rule, sum rule, Principal of Inclusion Exclusion (PIE)
 - Application of PIE: Number of onto functions
- Pigeonhole principle
 - Generalized, probabilistic forms
- Permutations
- Combinations
- Binomial Coefficients
- Generalizations
 - Combinations with repetitions, permutations with indistinguishable objects
- Algorithms
 - Generating combinations (1), permutations (2)
- More Examples

Combinations (1)

- Whereas permutations consider order, <u>combinations</u> are used when order does not matter
- Definition: A k-combination of elements of a set is an <u>unordered</u> selection of k elements from the set.

(A combination is imply a subset of cardinality k)

Combinations (2)

• **Theorem**: The number of k-combinations of a set of cardinality n with $0 \le k \le n$ is

$$C(n,k) = \binom{n}{k} = \frac{n!}{(n-k)!k!}$$

is read 'n choose k'.

 $n \cdot k$

Combinations (3)

A useful fact about combinations is that they are symmetric

$$\binom{n}{1} = \binom{n}{n-1} \qquad \binom{n}{2} = \binom{n}{n-2} \qquad \binom{n}{3} = \binom{n}{n-3}$$

 Corollary: Let n, k be nonnegative integers with k ≤ n, then

$$\binom{n}{k} = \binom{n}{n-k}$$

Combinations: Example A

- In the Powerball lottery, you pick
 - five numbers between 1 and 55 and
 - A single 'powerball' number between 1 and 42 How many possible plays are there?
- Here order does not matter
 - The number of ways of choosing 5 numbers is $\binom{55}{5}$
 - There are 42 possible ways to choose the powerball
 - The two events are not mutually exclusive: $42\binom{55}{5}$
 - The odds of winning are $\frac{1}{42\binom{55}{5}} < 0.000000006845$

Combinations: Example B

- In a sequence of 10 coin tosses, how many ways can 3 heads and 7 tails come up?
 - The number of ways of choosing 3 heads out of 10 coin tosses is $\binom{10}{3}$
 - It is the same as choosing 7 tails out of 10 coin tosses $\binom{10}{7}=\binom{10}{3}=120$
 - ... which illustrates the corollary $\binom{n}{k} = \binom{n}{n-k}$

Combinations: Example C

- How many committees of 5 people can be chosen from 20 men and 12 women
 - If exactly 3men must be on each committee?
 - If at least 4 women must be on each committee?
- If exactly three men must be on each committee?
 - We must choose 3 men and 2 women. The choices are <u>not</u> mutually exclusive, we use the product rule $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

$$\binom{20}{3} \cdot \binom{12}{2}$$

- If at least 4 women must be on each committee?
 - We consider 2 cases: 4 women are chosen and 5 women are chosen. Theses choices are mutually exclusive, we use the addition rule:

$$\binom{20}{1} \cdot \binom{12}{4} + \binom{20}{0} \cdot \binom{12}{5} = 10,692$$

Outline

- Introduction
- Counting:
 - Product rule, sum rule, Principal of Inclusion Exclusion (PIE)
 - Application of PIE: Number of onto functions
- Pigeonhole principle
 - Generalized, probabilistic forms
- Permutations
- Combinations
- Binomial Coefficients
- Generalizations
 - Combinations with repetitions, permutations with indistinguishable objects
- Algorithms
 - Generating combinations (1), permutations (2)
- More Examples

Binomial Coefficients (1)

- The number of r-combinations $\binom{n}{r}$ is also called the binomial coefficient
- The binomial coefficients are the coefficients in the expansion of the expression, (multivariate polynomial), (x+y)ⁿ

A binomial is a sum of two terms

Binomial Coefficients (2)

Theorem: Binomial Theorem

Let x, y, be variables and let n be a nonnegative integer. Then

$$(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} y^j$$

Expanding the summation we have

$$(x+y)^n = \binom{n}{0}x^n + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^2 + \dots + \binom{n}{n-1}xy^{n-1} + \binom{n}{n}y^n$$

Example

$$(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$$

Binomial Coefficients: Example

- What is the coefficient of the term x^8y^{12} in the expansion of $(3x+4y)^{20}$?
 - By the binomial theorem, we have

$$(3x+4y)^{20} = \sum_{j=0}^{20} {20 \choose j} (3x)^{n-j} (4y)^j$$

- When j=12, we have

$$\binom{20}{12} (3x)^8 (4y)^{12}$$

– The coefficient is

$$\binom{20}{12} 3^8 4^{12} = \frac{20!}{12!8!} 3^8 4^{12} = 13866187326750720$$

Binomial Coefficients (3)

- Many useful identities and facts come from the Binomial Theorem
- Corollary:

$$\Sigma_{k=0}^{n} \binom{n}{k} = 2^{n}$$

$$\Sigma_{k=0}^{n} (-1)^{k} \binom{n}{k} = 0, \quad n \ge 1$$

$$\sum_{k=0}^{n} 2^k \binom{n}{k} = 3^n$$

Equalities are based on $(1+1)^n=2^n$, $((-1)+1)^n=0^n$, $(1+2)^n=3^n$

Binomial Coefficients (4)

Theorem: Vandermonde's Identity

Let m,n,r be nonnegative integers with r not exceeding either

m or n. Then

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k}$$

- Corollary: If n is a nonnegative integer then $\binom{2n}{n} = \sum_{k=0}^r \binom{n}{k}^2$
- Corollary: Let n,r be nonnegative integers, r≤n, then

$$\binom{n+1}{r+1} = \sum_{j=r}^{n} \binom{j}{r}$$

Binomial Coefficients: Pascal's Identity & Triangle

- The following is known as Pascal's identity which gives a useful identity for efficiently computing binomial coefficients
- Theorem: Pascal's Identity
 Let n,k ∈Z⁺ with n≥k, then

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

Pascal's Identity forms the basis of a geometric object known as Pascal's Triangle

Pascal's Triangle

Outline

- Introduction
- Counting:
 - Product rule, sum rule, Principal of Inclusion Exclusion (PIE)
 - Application of PIE: Number of onto functions
- Pigeonhole principle
 - Generalized, probabilistic forms
- Permutations
- Combinations
- Binomial Coefficients
- Generalizations
 - Combinations with repetitions, permutations with indistinguishable objects
- Algorithms
 - Generating combinations (1), permutations (2)
- More Examples

Generalized Combinations & Permutations (1)

- Sometimes, we are interested in permutations and combinations in which repetitions are allowed
- Theorem: The number of r-permutations of a set of n objects with repetition allowed is n^r

...which is easily obtained by the product rule

• **Theorem**: There are

$$\binom{n+r-1}{r}$$

r-combinations from a set with n elements when repetition of elements is allowed

Generalized Combinations & Permutations: Example

- There are 30 varieties of donuts from which we wish to buy a dozen. How many possible ways to place your order are there?
- Here, n=30 and we wish to choose r=12.
- Order does not matter and repetitions are possible
- We apply the previous theorem
- The number of possible orders is

$$\binom{n+r-1}{r} = \binom{30+12-1}{12} = \binom{17}{12}$$

Generalized Combinations & Permutations (2)

• **Theorem:** The number of different <u>permutations</u> of n objects where there are n_1 indistinguishable objects of type 1, n_2 of type 2, and n_k of type k is

$$\frac{n!}{n_1!n_2!\cdots n_k!}$$

An equivalent ways of interpreting this theorem is the number of ways to

- distribute n distinguishable objects
- into k distinguishable boxes
- so that n_i objects are place into box i for i=1,2,3,...,k

Example

- How many permutations of the word Mississipi are there?
- 'Mississipi' has
 - 4 distinct letters: m,i,s,p
 - with 1,4,4,2 occurrences respectively
 - Therefore, the number of permutations is

$$\frac{11!}{1!4!4!2!}$$

Outline

- Introduction
- Counting:
 - Product rule, sum rule, Principal of Inclusion Exclusion (PIE)
 - Application of PIE: Number of onto functions
- Pigeonhole principle
 - Generalized, probabilistic forms
- Permutations
- Combinations
- Binomial Coefficients
- Generalizations
 - Combinations with repetitions, permutations with indistinguishable objects
- Algorithms
 - Generating combinations (1), permutations (2)
- More Examples

Algorithms

- In general, it is inefficient to solve a problem by considering all permutation or combinations since there are <u>exponential</u> (worst, factorial!) numbers of such arrangements
- Nevertheless, for many problems, <u>no better</u> approach is known.
- When exact solutions are needed, <u>backtracking</u> algorithms are used to exhaustively enumerate all arrangements

Algorithms: Example

Traveling Salesperson Problem (TSP)

Consider a salesman that must visit n different cities. He wishes to visit them in an order such that his overall distance travelled is minimized

- This problem is one of hundred of NP-complete problems for which no known efficient algorithms exist. Indeed, it is believed that no efficient algorithms exist. (Actually, Euclidean TSP is not even known to be in NP.)
- The only way of solving this problem <u>exactly</u> is to try all possible n! routes
- We give several algorithms for generating these combinatorial objects

Generating Combinations (1)

Recall that combinations are simply all possible subsets of size
 r. For our purposes, we will consider generating subsets of

- The algorithm works as follows
 - Start with {1,...,r}
 - Assume that we have $a_1a_2...a_r$, we want the next combination
 - Locate the last element ai such that $a_i \neq n-r-1$
 - Replace a_i with a_i+1
 - Replace a_i with a_i+j-I for j=i+1, i+2,...,r

Generating Combinations (2)

NEXT R-COMBINATIONS

Input: A set of n elements and an r-combination $a_1, a_2, ..., a_r$

Output: The next r-combination

- *1. i* ← r
- 2. While $a_i = n-r+i$ Do
- 3. $i \leftarrow i-1$
- 4. End
- $5. a_i \leftarrow a_i + 1$
- 6. For $j \leftarrow (i+1)$ to r Do
- 7. $a_i \leftarrow a_i + j i$
- 8. **End**

Generating Combinations: Example

- Find the next 3-combination of the set {1,2,3,4,5} after {1,4,5}
- Here $a_1=1$, $a_2=4$, $a_3=5$, n=5, r=3
- The last i such that a_i ≠5-3+i is 1
- Thus, we set

$$a_1 = a_1 + 1 = 2$$

$$a_2 = a_1 + 2 - 1 = 3$$

$$a_3 = a_1 + 3 - 1 = 4$$

Thus, the next r-combinations is {2,3,4}

Generating Permutations

- The textbook gives an algorithm to generate permutations in lexicographic order. Essentially, the algorithm works as follows. Given a permutation
 - Choose the left-most pair a_{j} , a_{j+1} where a_{j} < a_{j+1}
 - Choose the least items to the right of a_i greater than a_i
 - Swap this item and a_i
 - Arrange the remaining (to the right) items in order

NEXT PERMUTATION (lexicographic order)

```
Input
                 : A set of n elements and an r-permutation, a_1 \cdots a_r.
   Output : The next r-permutation.
1 j = n - 1
2 WHILE a_i > a_{i+1} DO
3 j = j - 1
4 END
   //j is the largest subscript with a_j < a_{j+1}
5 k = n
6 WHILE a_i > a_k DO
       k = k - 1
8 END
   //a_k is the smallest integer greater than a_i to the right of a_i
9 swap(a_i, a_k)
10 r = n
11 s = j + 1
12 WHILE r > s DO
13
   swap(a_r, a_s)
14 r = r - 1
15 s = s + 1
16 END
```

Generating Permutations (2)

- Often there is no reason to generate permutations in lexicographic order. Moreover even though generating permutations is inefficient in itself, lexicographic order induces even more work
- An alternate method is to fix an element, then recursively permute the n-1 remaining elements
- The Johnson-Trotter algorithm has the following attractive properties. Not in your textbook, not on the exam, just for your reference/culture
 - It is bottom up (non-recursive)
 - It induces a minimal-change between each permutation

Johnson-Trotter Algorithm

We associate a direction to each element, for example

$$\overrightarrow{3} \overleftarrow{2} \overrightarrow{4} \overleftarrow{1}$$

- A component is mobile if its direction points to an adjacent component that is smaller than itself.
- Here 3 and 4 are mobile, 1 and 2 are not

Algorithm: Johnson Trotter

```
Input
                        : An integer n.
                        : All possible permutations of \langle 1, 2, \dots n \rangle.
    Output
  \pi = \overleftarrow{1} \overleftarrow{2} \dots \overleftarrow{n}
   WHILE There exists a mobile integer k \in \pi DO
3
           k = largest mobile integer
4
           swap k and the adjacent integer k points to
5
           reverse direction of all integers > k
6
           Output \pi
    END
```

Outline

- Introduction
- Counting:
 - Product rule, sum rule, Principal of Inclusion Exclusion (PIE)
 - Application of PIE: Number of onto functions
- Pigeonhole principle
 - Generalized, probabilistic forms
- Permutations
- Combinations
- Binomial Coefficients
- Generalizations
 - Combinations with repetitions, permutations with indistinguishable objects
- Algorithms
 - Generating combinations (1), permutations (2)
- More Examples

Example A

- How many bit strings of length 4 are there such that 11 never appear as a ssubstring
- We can represent the set of strings graphically using a diagram tree (see textbook pages 343)

CSCE 235 67

Example: Counting Functions (1)

- Let S,T be sets such that |S|=n, |T|=m.
 - How many function are there mapping f:S→T?
 - How many of these functions are one-to-one (injective)?
- A function simply maps each s_i to one t_j, thus for each n we can choose to send it to any of the elements in T
- Each of these is an independent event, so we apply the multiplication rule:
- If we wish f to be injective, we must have n≤m, otherwise the answer is obviously 0

Example: Counting Functions (2)

- Now each s_i must be mapped to a unique element in T.
 - For s₁, we have m choices
 - However, once we have made a mapping, say s_j , we cannot map subsequent elements to t_i again
 - In particular, for the second element, s_2 , we now have m-1 choices, for s_3 , m-2 choices, etc.

$$m \cdot (m-1) \cdot (m-2) \cdot \dots (m-(n-2)) \cdot (m-(n-1))$$

 An alternative way of thinking is using the choose operator: we need to choose n element from a set of size m for our mapping

$$\binom{m}{n} = \frac{m!}{(m-n)!n!}$$

• Once we have chosen this set, we now consider all permutations of the mapping, that is n! different mappings for this set. Thus, the number of such mapping is $\frac{m!}{(m-n)!n!} \cdot n! = \frac{m!}{(m-n)!}$

CSCE 235 Combinatorics 69

Another Example: Counting Functions

- Let S={1,2,3}, T={a,b}.
 - How many onto (surjective) mappings are there from S→T?
 - How many onto-to-one injective functions are there from T→S?
- See Theorem 1, page 509

Example: Sets

- How many k integers 1≤k≤100 are divisible by 2 or 3?
- Let
 - A = $\{n \in Z \mid (1 \le n \le 100) \land (2 \mid n)\}$
 - B = {n∈Z | (1 ≤ n ≤ 100) \land (3 | n)}
- Clearly, $|A| = \lfloor 100/2 \rfloor = 50$, $|B| = \lfloor 100/3 \rfloor = 33$
- Do we have |A∪B| = 83? No!
- We have over counted the integers divisible by 6
 - Let C = {n∈Z | (1 ≤ n ≤ 100) \land (6|n)}, |C| = [100/6] = 16
- So $|A \cup B| = (50+33) 16 = 67$

Summary

- Introduction
- Counting:
 - Product rule, sum rule, Principal of Inclusion Exclusion (PIE)
 - Application of PIE: Number of onto functions
- Pigeonhole principle
 - Generalized, probabilistic forms
- Permutations, Derangements
- Combinations
- Binomial Coefficients
- Generalizations
 - Combinations with repetitions, permutations with indistinguishable objects
- Algorithms
 - Generating combinations (1), permutations (2)
- More Examples