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Preface

n writing this book I have been motivated by the desire to create a
high-quality textbook that costs almost nothing.

The book is available on my web page for free, and the paperback
versions (produced through an on-demand press) cost considerably less
than comparable traditional textbooks. Any new editions of this text will
be issued solely for the purpose of correcting mistakes and clarifying the
exposition. New exercises may be added, but the existing ones will not be
unnecessarily changed or renumbered.

This text is an expansion and refinement of lecture notes I developed
while teaching proofs courses over the past ten years. It is written for
an audience of mathematics majors at Virginia Commonwealth Univer-
sity, a large state university. While it is catered to our program, and is
intended to prepare our students for our more advanced courses, I am
mindful of a larger audience. I believe this book is suitable for almost any
undergraduate mathematics program.

Richmond, Virginia Ricuarp HamMmMmack
June 12, 2009



Introduction

This is a book about how to prove theorems.

Until this point in your education, you may have regarded mathematics
as being a primarily computational discipline. You have learned to solve
equations, compute derivatives and integrals, multiply matrices and find
determinants; and you have seen how these things can answer practical
questions about the real world. In this setting, your primary goal in using
mathematics has been to compute answers.

But there is another approach to mathematics that is more theoretical
than computational. In this approach, the primary goal is to understand
mathematical structures, to prove mathematical statements, and even
to discover new mathematical theorems and theories. The mathematical
techniques and procedures that you have learned and used up until now
have their origins in this theoretical side of mathematics. For example, in
computing the area under a curve, you use the Fundamental Theorem of
Calculus. It is because this theorem is true that your answer is correct.
However, in your calculus class you were probably far more concerned with
how that theorem could be applied than in understanding why it is true.
But how do we know it is true? How can we convince ourselves or others
of its validity? Questions of this nature belong to the theoretical realm of
mathematics. This book is an introduction to that realm.

This book will initiate you into an esoteric world. You will learn to
understand and apply the methods of thought that mathematicians use to
verify theorems, explore mathematical truth and create new mathematical
theories. This will prepare you for advanced mathematics courses, for you
will be better able to understand proofs, write your own proofs and think
critically and inquisitively about mathematics.
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The book is organized into four parts, as outlined below.

PART 1

o Chapter 1: Sets

o Chapter 2: Logic

e Chapter 3: Counting

Chapters 1 and 2 lay out the language and conventions used in all advanced
mathematics. Sets are fundamental because every mathematical structure,
object or entity can be described as a set. Logic is fundamental because it
allows us to understand the meanings of statements, to deduce information
about mathematical structures and to uncover further structures. All
subsequent chapters will build on these first two chapters. Chapter 3
is included partly because its topics are central to many branches of
mathematics, but also because it is a source of many examples and exercises
that occur throughout the book. (However, the course instructor may choose
to skip Chapter 3.)

PART II

e Chapter 4: Direct Proof

e Chapter 5: Contrapositive Proof

e Chapter 6: Proof by Contradiction

Chapters 4 through 6 are concerned with three main techniques used for
proving theorems that have the “conditional” form “If P, then @”.

PART III

o Chapter 7: Proving Non-Conditional Statements

o Chapter 8: Proofs Involving Sets

e Chapter 9: Disproof

e Chapter 10: Mathematical Induction

These chapters deal with useful variations, embellishments and conse-
quences of the proof techniques introduced in chapters 4 through 6.

PART IV

e Chapter 11: Relations

e Chapter 12: Functions

o Chapter 13: Cardinality of Sets

These final chapters are mainly concerned with the idea of functions, which
are central to all of mathematics. Upon mastering this material you will
be ready for many advanced mathematics courses, such as combinatorics,
abstract algebra, analysis and topology.
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The book is designed to be covered in a fourteen-week semester. Here
is a possible timetable.

’ Week ‘ Monday Wednesday Friday
1 Section 1.1 Section 1.2 Sections 1.3, 1.4
2 Sections 1.5, 1.6, 1.7 Section 1.8 Section 2.1
3 Section 2.2 Sections 2.3, 2.4 Sections 2.5, 2.6
4 Section 2.7 Sections 2.8, 2.9 Sections 2.10, 2.11*, 2.12*
5 Sections 3.1, 3.2 Section 3.3 Sections 3.4, 3.5*
6 EXAM Sections 4.1, 4.2, 4.3 Sections 4.3, 4.4, 4.5*
7 Sections 5.1, 5.2, 5.3* | Section 6.1 Sections 6.2 6.3*
8 Sections 7.1, 7.2%, 7.3 | Sections 8.1, 8.2 Section 8.3
9 Section 8.4 Sections 9.1, 9.2, 9.3* | Section 10.0
10 Sections 10.0, 10.3* Sections 10.1, 10.2 EXAM
11 Sections 11.0, 11.1 Sections 11.2, 11.3 Sections 11.4, 11.5
12 Section 12.1 Section 12.2 Section 12.2
13 Sections 12.3, 12.4* Section 12.5 Sections 12.5, 12.6*
14 Section 13.1 Section 13.2 Section 13.3

Sections marked with *+ may require only the briefest mention in class, or
may be best left for the students to digest on their own. Some instructors
may prefer to omit Chapter 3.

Acknowledgments. I thank my students in VCU’s MATH 300 courses
for offering feedback as they read this book. Thanks especially to Cory
Colbert and Lauren Pace for rooting out many typographical mistakes and
inconsistencies. I am especially indebted to Cory for reading early drafts
of each chapter and catching numerous mistakes before I posted the final
draft on my web page. Cory also created the index, suggested some of the
more interesting exercises, and wrote many of the solutions. Thanks also
to Micol Hammack for proofreading the entire text, and to Andy Lewis for
suggesting many improvements while teaching from the text in Fall 2008
and Fall 2009. T am grateful to Eleni Kanakis for creating the cover art.

I am indebted to VCU’s Center For Teaching Excellence for awarding
Lon Mitchell and me a CTE Small Grant for open-source textbook pub-
lishing. It was through this grant that we were able to buy the ISBN and
professional fonts. Thanks also to series editor Lon Mitchell, whose exper-
tise with typesetting and on-demand publishing made the print version of
this book a reality.
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CHAPTER 1

Sets

11 of mathematics can be described with sets. This becomes more and

more apparent the deeper into mathematics you go. It will be apparent

in most of your upper-level courses, and certainly in this course. The theory

of sets is a language that is perfectly suited to describing and explaining
all types of mathematical structures.

1.1 Introduction to Sets

A set is a collection of things. The things in the collection are called
elements of the set. We are mainly concerned with sets whose elements
are mathematical entities, such as numbers, points, functions, etc.

A set is often expressed by listing its elements between commas, en-
closed by braces. For example, the collection {2,4,6,8} is a set which has
four elements, the numbers 2,4,6 and 8. Some sets have infinitely many
elements. For example, consider the collection of all integers,

{...—4,-3,-2,-1,0,1,2,3,4...}

Here the dots indicate a pattern of numbers that continues forever in both
the positive and negative directions. A set is called an infinite set if it
has infinitely many elements; otherwise it is called a finite set.

Two sets are equal if they contain exactly the same elements. Thus
{2,4,6,8} = {4,2,8,6} because even though they are listed in a different
order, the elements are identical; but {2,4,6,8} # {2,4,6,7}. Also

{...—4,-3,-2,-1,0,1,2,3,4...} = {0,-1,1,-2,2,-3,3,-4,4,...}.

We often let upper-case letters stand for sets. In discussing the set
{2,4,6,8} we might declare A = {2,4,6,8} and then use A to stand for
{2,4,6,8}. To express that 2 is an element of the set A, we write 2€ A, and
read this as “2 is an element of A” or “2 is in A” or just “2 in A.” We also
have 4€ A, 6€ A and 8€ A, but 5¢ A. We read this last expression as “5 is
not an element of A,” or “5 not in A.” Expressions like 6,2€ A or 2,4,8c A
are commonly used for indicating that several things are in a set.



4 Sets

Some sets are so significant and prevalent that we reserve special
symbols for them. The set of natural numbers (i.e. the positive whole
numbers) is denoted as

N=1{1,2,3,4,...}.

The set of integers
z={...-3,-2,-1,0,1,2,3,4,...}

is another fundamental set. The symbol R stands for the set of all real
numbers, a set that is undoubtedly familiar to you from calculus. Other
special sets will be listed later in this section.

Sets need not have just numbers as elements. The set B = {T,F} consists
of two letters, perhaps representing the values “true” and “false.” The set
C ={a,e,i,0,u} consists of the lower-case vowels in the English alphabet.
The set D ={(0,0),(1,0),(0,1),(1,1)} has as elements the four corner points
of a square on the x-y coordinate plane. Thus (0,0)e D, (1,0) e D, etc., but
(1,2) ¢ D (for instance). It is even possible for a set to have other sets
as elements. Consider E ={1,{2,3},{2,4}}, which has three elements: the
number 1, the set {2,3} and the set {2,4}. Thus 1€ E and {2,3} € E and
{2,4} €E. But note that 2¢E, 3¢ E, and 4¢ E.

For yet another example, consider the set M ={[38],[§9],[1 9]} of three
two-by-two matrices. We have [§9] e M, but [1 9]¢ M.

If X is a finite set, its cardinality or size is the number of elements
it has, and this number is denoted as |X|. Thus for the sets above, [A| =4,
IB|=2, |C|=5, |D|=4, |[E|=3 and |[M|=3.

There is a special set that, although small, plays a big role. The
empty set is the set {} that has no elements. We denote it as @, so ¢ = {}.
Whenever you see the symbol @, it stands for {}. Observe that |¢|=0. The
empty set is the only set whose cardinality is zero.

Be very careful how you write the empty set. Don’t write {¢} when
you mean @. These sets can’t be equal because @ contains nothing while
{®} contains one thing, namely the empty set. If this is confusing, think
of a set as a box with things in it, so, for example, {2,4,6,8} is a “box”
containing four numbers. Thus the empty set ¢ = {} is an empty box. By
contrast, {@} is a box with an empty box inside it. Obviously, there’s a
difference: An empty box is not the same as a box with an empty box
inside it. Thus @ # {g}. (You might also observe that |¢| =0 and |{#}| =1
as additional evidence that @ # {®}.)
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This box analogy can help you think about sets. The set F = {@,{},{{2}}}
may look strange but it is really very simple. Think of it as a box contain-
ing three things: an empty box, a box containing an empty box, and a box
containing a box containing an empty box. Thus |F|=3. The set G = {N,z}
is a box containing two boxes, the box of natural numbers and the box of
integers. Thus |G| =2.

A special notation called set-builder notation is used to describe sets
that are too big or complex to list between braces. Consider the infinite
set of even integers E ={...,-6,-4,-2,0,2,4,6,...}. In set-builder notation
this set is written as

E= {2n ‘ne Z}.

We read the first brace as “the set of all things of form,” and the colon as
“such that.” Thus the entire expression E = {2n:n € Z} is read as “E equals
the set of all things of form 2n, such that n is an element of Z.” The idea
is that E consists of all possible values of 2n, where n is allowed to take
on all values in Z.

In general, a set X written with set-builder notation has the syntax

X = {expression : rule},

where the elements of X are understood to be all values of “expression”
that are specified by “rule.” For example, the set E above is the set
of all values the expression 2n that satisfy the rule n € Z. There can
be many ways to express the same set. For example E = {2n :n € Z}
= {n:n is an even integer} = {n:n =2k,k € Z}. Another common way of
writing it is
E={neZ:nis even}
which we read as “E is the set of all n in Z such that »n is even.”

Example 1.1 Here are some further illustrations of set-builder notation.
1. {n:n is a prime number} = {2,3,5,7,11,13,17,...}

2. {neN:n is prime} = {2,3,5,7,11,13,17,...}

3. {n?:nez}={0,1,4,9,16,25,...}

4. {xER:x2—2=O} = {\/§,—\/§}

5. {xez:x2-2=0}=¢

6. {xeZ:|x|<4}={-3,-2,-1,0,1,2,3}

7. {2x:x€Z,|x| <4} ={-6,-4,-2,0,2,4,6}
8. {xEZ:I2x|<4}={—1,0,1}
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These last three examples highlight a conflict of notation that we must
always be alert to. The expression |X| means absolute value if X is a
number and cardinality if X is a set. The distinction should always be
clear from context. In the |x| in Example 6 above, we have x € Z, so x is
a number (not a set) and thus the bars in |x| must mean absolute value,
not cardinality. On the other hand, consider A ={{1,2},{3,4,5,6},{7}} and
B={Xe€A:|X|<3}. The elements of A are sets (not numbers) so the |X|
in the expression for B must mean cardinality. Therefore B = {{1,2},{7}}.

We close this section with a summary of special sets. These are sets or
types of sets that come up so often that they are given special names and
symbols.

* The empty set: ¢ ={}
* The natural numbers: N={1,2,3,4,5,...}
* The integers: z={...,-3,-2,-1,0,1,2,3,4,5,...}

* The rational numbers: Q={x : x = ﬁ, where m,n €7 and n # 0}
n

The real numbers: R (the set of all real numbers on the number line)

Notice Q is the set of all numbers that can be expressed as a fraction of
two integers. You are surely aware that Q #R, for v2¢ Q but vV2€eR.

There are some other special sets that you will recall from your study
of calculus. Given two numbers a,b € R with a <b, we can form various
intervals on the number line.

* Closed interval: [a,b]={x€R:a <x <b}

* Half open interval: (a,b]={xeR:a <x<b}

* Half open interval: [a,b)={xeR:a <x<b}

* Open interval: (a,b)={xeR:a<x<b}

* Infinite interval: (a,00)={x€R:a <x}

* Infinite interval: [a,00) = {x€R:a <x}

* Infinite interval: (-o0o,b)={xeR:x <b}

* Infinite interval: (-oco,b]={xeR:x < b}

Remember that these are intervals on the number line, so they have in-
finitely many elements. The set (0.1,0.2) contains infinitely many numbers,
even though the end points may be close together. It is an unfortunate
notational accident that (a,b) can denote both an interval on the line and

a point on the plane. The difference is usually clear from context. In the
next section we will see still another meaning of (a,b).
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Exercises for Section 1.1
A. Write each of the following sets by listing their elements between braces.

{5x—1:x€Z}

1.

NS PR wDN

3x+2:x€7}

€Z:-2<x<T}
eN:-2<x<T7}
€R:x2=3}
eR:x%=9}
eR:x%+5x =6}
eR:x3 +5x% = —6x}

9. {xeR:sinmx =0}
10. {xeR:cosx =1}
11. {x€Z:|x| <5}
12. {xeZ:|2x| <5}
13. {xEZ:I6x|<5}
14. {5x:x€7,|2x| <8}
15. {5a+2b:a,be 7}
16. {6a+2b:a,beZ}

B. Write each of the following sets in set-builder notation.
17. {2,4,8,16,32,64...}

18.
19.

A

C. Find the following cardinalities.

0,4,16,36,64,100,...}

-6,-3,0,3,6,9,12,15,.

-8,-3,2,7,12,17,.
0 1,4,9,16,25,36,...}
3,6,11,18,27,38,...}

29. |{{1},{2,{3,4}},2}|
30. |{{1,4},a,6,{{3,4}},{2}}|
[{{{1},{2,13,4}}, 8}}|

31.

32.
33.

I{{{1,4},a,b,{{3,4}},{¢}}}|

[{xe€Z:|x| <10}

-}

-}

23. {3,4,5,6,7,8}

24. {-4,-3,-2,-1,0,1,2}

25. {...,3, 111248, .}

26. {...,5,5,3,1,3,9,27,...}

27. {...,-n,-2,0,%, 7,3 27,22 ...}
28. { ',_%7_%,07%7%’%53,14_5737 }

34. |[{xeN:|x| <10}
35. [{xezZ:x?<10}|
36. |{xeN:x?<10}|
37. |{xeN:x? <0}
38. |{xeN:5x <20}

D. Sketch the following sets of points in the x-y plane.
{(x,y):x€[1,2],y €[1,21]}
(x,y):x€[0,1],y €[1,2]}

39.
40.
41.
42.
43.
44.
45.

{
{
{
{
{
{

(x,):x€[-1,1),y =1}
(x,y):x=2,y€[0,11}
(x,y):1xl =2,y €[0,1]}
(x,x2): xER}
(x,y):x,y €R,x% + y2

=1

46. {(x,y):x,yER,x2+y251}

47. {(x,y):x,yelR,ysz—l}

48. {(x,y):x,yeR,x>1}

49. {(x,x+y):xeR,yc 7}

50. {(x,%):xER,yEN}

51. {(x,y)eR? : (y—x)(y+x)=0}
52. {(x,y)eR2 : (y—x2)(y+x2)=0}
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1.2 The Cartesian Product

Given two sets A and B, it is possible to “multiply” them to produce a new
set denoted as A x B. This operation is called the Cartesian product. To
understand it, we must first understand the idea of an ordered pair.

Definition 1.1 An ordered pair is a list (x,y) of two things x and y,
enclosed in parentheses and separated by a comma.

For example (2,4) is an ordered pair, as is (4,2). These ordered pairs
are different because even though they have the same things in them,
the order is different. We write (2,4) # (4,2). Right away you can see that
ordered pairs can be used to describe points on the plane, as was done in
calculus, but they are not limited to just that. The things in an ordered
pair don’t have to be numbers. You can have ordered pairs of letters, such
as (m,?), ordered pairs of sets such as ({2,2},{3,2}), even ordered pairs
of ordered pairs like ((2,4),(4,2)). The following are also ordered pairs:
(2,{1,2,3}), (R,(0,0)). Any list of two things enclosed by parentheses is an
ordered pair. Now we are ready to define the Cartesian product.

Definition 1.2 The Cartesian product of two sets A and B is another
set, denoted as A x B and defined as A xB={(a,b):a€A,beB}.

Thus A xB is a set of ordered pairs of elements from A and B. For
example, if A ={k,¢,m} and B ={q,r}, then

AxB={(k,q),(k,1),(£,),(t,1),(m,q),(m,1)}.

Figure 1.1 shows how to make a schematic diagram of A x B. Line up the
elements of A horizontally and line up the elements of B vertically, as if A
and B form an x- and y-axis. Then fill in the ordered pairs so that each
element (x,y) is in the column headed by x and the row headed by y.

B AxB

r (k,r) (,r) (m,r)

q (k,q) (4,q) (m,q)
Ch ¢ ma

Figure 1.1. A diagram of a Cartesian product
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For another example, {0,1} x {2,1} = {(0,2),(0,1),(1,2),(1,1)}. If you are
a visual thinker, you may wish to draw a diagram similar to Figure 1.1.
The rectangular array of such diagrams give us the following general fact.

Fact 1.1 If A and B are finite sets, then |A xB|=|A|-|B]|.

The set R xR ={(x,y):x,y € R} should be very familiar. It can be viewed
as the set of points on the Cartesian plane, and is drawn in Figure 1.2(a).
The set RxN = {(x,y):x€R,y € N} can be regarded as all of the points on
the Cartesian plane whose second coordinate is natural number. This is
illustrated in Figure 1.2(b), which shows that R x N looks like infinitely
many horizontal lines at integer heights above the x axis. The set Nx N
can be visualized as the set of all points on the Cartesian plane whose
coordinates are both natural numbers. It looks like a grid of dots in the
first quadrant, as illustrated in Figure 1.2(c).

y Y y

R xR RxN N x N

(a) (b) (c)

Figure 1.2. Drawings of some Cartesian products

It is even possible for one factor of a Cartesian product to be a Cartesian
product itself, as in Rx (N x Z) = {(x,(y,2)) :x €R,(y,2) N x Z}.

We can also define Cartesian products of three or more sets by moving
beyond ordered pairs. An ordered triple is a list (x,y,z). The Cartesian
product of the three sets R, N and Z is RxNxZ = {(x,y,2):x €R, y N, z € Z}.
Of course there is no reason to stop with ordered triples. In general,

AixAgx--x Ay ={(x1,x2,...,x,) 1 x; € A; for each i =1,2,...,n}.

But we should always be mindful of parentheses. There is a slight
difference between Rx (N x Z) and RxNx Z. The first is a Cartesian product
of two sets. Its elements are ordered pairs (x,(y,z)). The second is a
Cartesian product of three sets, and its elements look like (x,y,z2).
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We can also take Cartesian powers of sets. For any set A and positive
integer n, the power A" is the Cartesian product of A with itself n times.

A" =AxAx--xA={(x1,%2,...,%,) : X1,%2,...,%, € A}

In this way, R? is the familiar Cartesian plane and R? is three-dimensional
space. You can visualize how, if R? is the plane, then 7%= {(m,n): m,n € 7}
is a grid of dots on the plane. Likewise, as R? is 3-dimensional space,
73 ={(m,n,p):m,n,p € Z} is a grid of dots in space.

In other courses you may encounter sets that are very similar to R”,
but yet have slightly different shades of meaning. Consider, for example
the set of all two-by-three matrices with entries from R:

M={[%3%]:u,v,wxyzeR}.
This is not really all that different from the set
R6 = {w,v,w,x,y,2) : u,v,w,x,y,z €R}.

The elements of these sets are merely certain arrangements of six real
numbers. Despite their similarity, we maintain that M # RS, for a two-by-

three matrix is not the same thing as an ordered sequence of six numbers.

Exercises for Section 1.2
1. Suppose A ={1,2,3,4} and B = {a,c}.

(a) AxB () AxA (e) pxB (g) Ax(BxB)
(b) BxA (d) BxB () (AxB)xB (h) B3
2. Suppose A = {m,e,0} and B ={0,1}.
(a) AxB (c) AxA (e) Axp (g) Ax(BxB)
(b) BxA (d) BxB () (AxB)xB (h) AxBxB
3. {xE[R:x2=2}x{a,c,e} 6. {xER:xQZx}x {xEN:x2:x}
4. {nezZ:2<n<5}x{neZ:|n|=5} 7. {o} x{0,8} x{0,1}
5. {xeR:x%2=2} x {xeR:|x|=2} 8. {0,1}*
Sketch these Cartesian products on the x-y plane R2. (Or in R? for the last two.)
9. {1,2,3} x{-1,0,1} 15. {1} x[0,1]
10. {-1,0,1} x {1,2,3} 16. [0,1]x {1}
11. [0,11x[0,1] 17. NxZ
12, [-1,1]1x[1,2] 18. ZxZ7
13. {1,1.5,2} x[1,2] 19. [0,1]1x[0,1]1x[0,1]

14. [1,2]1x{1,1.5,2} 20. {(x,y)eR%:x%+y% <1} x[0,1]
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1.3 Subsets

It can happen that every element of some set A is also an element of
another set B. For example, each element of A ={0,2,4} is also an element
of B={0,1,2,3,4}. When A and B are related this way we say that A is a
subset of B.

Definition 1.3 Suppose A and B are sets. If every element of A is also
an element of B, then we say A is a subset of B, and we denote this as
A cB. We write A ¢ B if A is not a subset of B, that is if it is not true that
every element of A is also an element of B. Thus A £ B means that there
is at least one element of A that is not an element of B.

Example 1.2 Be sure you understand why each of the following is true.
{2,3,7} < {2,3,4,5,6,7}

{2,3,7} ¢ {2,4,5,6,7}

{2,3,7} < {2,3,7}

{Zn ‘neE Z} cZ

{(x,sin(x)) : x € R} < R?

{2,3,5,7,11,13,17,...} =N

NSZcQc<R

RxN<SRxR

® N o Ok WD

This brings us to a particularly important fact: If B is any set what-
soever, then ¢ < B. To see why this is true, look at the definition of <.
If = B were false, there would be an element in ¢ that was not in B.
But there can be no such element because @ contains no elements! The
inescapable conclusion is that @ < B.

Fact 1.2 The empty set is a subset of every set, that is @ < B for any set B.

Here is another way to look at it. Imagine a subset of B as something
you make by starting with braces {}, then filling them with selections from
B. For instance, suppose B = {a,b,c}. To make one particular subset of B,
start with {}, select b and ¢ from B and insert them into {} to form the
subset {b,c}. Alternatively, you could have chosen a and b to make {a,b},
and so on. But one option is to simply make no selections from B. This
leaves you with the subset {}. Thus {} =B. More often we write it as ¢ < B.
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This idea of “making” a subset can help us list out all the subsets of
a given set B. As an example, let B ={a,b,c}. Let’s list all of its subsets.
One way of approaching this is to make a tree-like structure. Begin with
the subset {}, which is shown on the left of Figure 1.3. Considering the
element a of B, we have a choice; insert it or not. The lines from {} point
to what we get depending whether or not we insert a, either {} or {a}. Now
move on to the element b of B. For each of the sets just formed we can
either insert or not insert b, and the lines on the diagram point to the
resulting sets {}, {b},{a}, or {a,b}. Finally, to each of these sets, we can
either insert ¢ or not insert it, and this gives us, on the far right-hand
column, the sets {}, {c}, {6}, {b,c}, {a}, {a,c}, {a,b} and {a,b,c}. These are
the eight subsets of B = {a,b,c}.

Insert «? Insert b? Insert c¢?

|
j -
e
\Yes _— {b}
NG \{b}<No
Yes\ {b,c}
{} (ol
Yes {a}<NO/
\{a}/ N~ o
~_

Ye _— {a,b}

S
a, b} N

\Yes —_ {a,b,c}

Figure 1.3. A “tree” for listing subsets

We can see from the way this tree branches out that if it happened that
B ={a}, then B would have just two subsets, those in the second column
of the diagram. If it happened that B = {a,b}, then B would have four
subsets, those listed in the third column, and so on. At each branching of
the tree, the number of subsets doubles. Thus in general, if |B| = n, then
B must have 2" subsets.

Fact 1.3 If a finite set has n elements, then it has 2" subsets.
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For a slightly more complex example, consider listing the subsets of
B ={1,2,{1,3}}. This B has just three elements: 1, 2 and {1,3}. At this
point you probably don’t even have to draw a tree to list out B’s subsets.
You just make all the possible selections from B and put them between
braces to get

i {1 {25 {{L8)) {12} {1.{1,3}}, {2,{1,3}}, {1,2,{1,3}}.

These are the eight subsets of B. Exercises like this help you identify what
is and isn’t a subset. You know immediately that a set such as {1,3} is not
a subset of B because it can’t be made by selecting elements from B, as
the 3 is not an element of B and thus is not a valid selection.

Example 1.3 Be sure you understand why the following statements are
true. Each illustrates an aspect of set theory that you've learned so far.

1o1e{t{a}}ooo 1 is the first element listed in {1,{1}}
2. 1Z{1 {1} o because 1 is not a set
3o {1fe{t {1} {1} is the second element listed in {1,{1}}
4. {c{ {1} make subset {1} by selecting 1 from {1,{1}}
5 {{1}e{r{1}}........... because {1,{1}} contains only 1 and {1}, and not {{1}}
6. {{1}pc{, {1} make subset {{1}} by selecting {1} from {1,{1}}
7. N¢N......... because N is a set (not a number) and N contains only numbers
8. N CEN i e e e because X c X for every set X
9. @¢N.....oii because the set N contains only numbers and no sets
10, BN . e because ¢ is a subset of every set
11 Ne{Nfooooo because {N} has just one element, the set N
120 Ng{N} oo because, for instance, 1€N but 1¢ {N}
18. ge{Np ... note that the only element of {N} is N, and N# @
14 B{Nb.o because ¢ is a subset of every set
15. de{d,N}ooooo @ is the first element listed in {@,N}
16. @{@d,N}. i because @ is a subset of every set
17 {Npe{a,N} oo make subset {N} by selecting N from {@,N}
18. AN} 2o, AN oo because N ¢ {@, {N}}
19. {Npe{p, N} ..o {N} is the second element listed in {®,{N}}
20. {(1,2),(2,2),(T,D} SNXN...ooiiiiiieannn. each of (1,2), (2,2), (7,1) is in NxN

Though they should help you understand the concept of subset, the
above examples are somewhat artificial. But subsets arise very naturally
in mathematics. Consider the unit circle C = {(x,y) € R? : 2 + y2 = 1}. This is
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a subset C cR2. Likewise the graph of a function y = f(x) is a set of points
G ={(x,f(x)):x e R}, and G cR2. You will surely agree that sets such as C
and G are more easily understood or visualized when regarded as subsets
of R?. Mathematics is filled with such instances where it is important to
regard one set as a subset of another.

Exercises for Section 1.3
A. List all the subsets of the following sets.

1. {1,2,3,4} 5. {o}

2. {1,2,0} 6. {R,Q,N}

3. {{r}} 7. {R.{Q.N}}

4. ¢ 8. {{0,1},{0,1,{2}},{0}}

B. Write out the following sets by listing their elements between braces.

9. {X:Xc{3,2,a} and |X|=2} 11. {X:Xc{3,2,a} and |X|=4}
10. {XcN:|X|=<1} 12. {X:X <{3,2,a} and |X|=1}
C. Decide if the following statements are true or false. Explain.
13. R3cR? 15. {(x,y):x-1=0} c{(x,y): 2% —x =0}
14. RZcR3 16. {(x,y):xz—xZO}g{(x,y):x—le}

1.4 Power Sets

Given a set, you can form a new set with the power set operation, defined
as follows.

Definition 1.4 If A is a set, the power set of A is another set, denoted
as #(A) and defined to be the set of all subsets of A. In symbols, Z(A) =
{X: X cA}.

For example, suppose A ={1,2,3}. The power set of A is the set of all
subsets of A. We learned how to find these in the previous section, and
they are {}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3} and {1,2,3}. Therefore the power
set of A is

2A4)={ o, {1}, {2}, {3}, {1,2}, {1,8}, {2,3}, {1,2,3} }.

As we saw in the previous section, if finite set A has n elements, then
it has 2" subsets, and thus its power set has 2" elements.



Power Sets 15

Fact 1.4 If A is a finite set, then |2(4)| = 214!

Example 1.4 You should examine the following statements and make
sure you understand how the answers were obtained. In particular, notice
that in each instance the equation | 22(4)| = 24! is true.

2 ({0,1,3}) ={9g, {0}, {1}, {3}, {0,1}, {0,3}, {1,3}, {0,1,3} }
2 ({1,2}) ={e, {1}, {2}, {1.2}}

2 ({1Y) ={o, {1}}

2(@)={0}

2 ({a}) ={2, {a}}

2 ({o}) =10, {2}}

Z({a}) x 2 ({2}) ={(2,9), (8,{8}), (a},®), {a},{2}) }
2 (2 ({2}) ={2, {2}, {{2}}, {2.{2}}}

- 2({L{L2) ={e, {1}, {{1.2}}, {1.{1.2}}}

10. 2({z.N}) ={ 2, {z}, {N}, {Z,N}}

Next are some that are wrong. See if you can determine why they are wrong
and make sure you understand the explanation on the right.

S N T o

11, 2 ={a, {1} } ... meaningless because 1 is not a set
12. 2 ({1,{1,2}}) = {,{1},{1,2},{1,{1,2}}} ........ wrong because {1,2} ¢ {1,{1,2}}
13. Z({1,{1,2}}) = {o, {{1}}. {{1.2}}.{2.{1,2}}} .. ... wrong because {{1}} ¢ {1,{1,2}}

If A is finite, it is possible (though maybe not practical) to list out #(A)
between braces as was done in examples 1-10 above. That is not possible
if A is infinite. For example, consider #2(N). You can start writing out the
answer, but you quickly realize N has infinitely many subsets, and it’s not
clear how (or if) they could be arranged as a list with a definite pattern:

PN ={2,{1},12},...,11,2},{1,3},...,{39,47},
...,{3,87,131},...,{2,4,6,8,...},... 2 ...}

The set Z(R?) is mind boggling. Think of R% = {(x,y):x,y € R} as the set
of all points on the Cartesian plane. A subset of R? (that is, an element
of Z(R?)) is a set of points in the plane. Let’s look at some of these sets.
Since {(0,0),(1,1)} < R?, we know that {(0,0),(1,1)} € 2([R?). We can even
draw a picture of this subset, as in Figure 1.4(a). For another example,
the graph of the equation y = x? is the set of points G = {(x,x?):x € R} and
this is a subset of R, so G € Z(R?). Figure 1.4(b) is a picture of G. Since
this can be done for any function, the graph of every imaginable function
f:R— R can be found inside of Z(R?).
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Figure 1.4. Three of the many, many sets in Z(R?)

In fact, any black-and-white image on the plane can be thought of as a
subset of R?, where the black points belong to the subset and the white
points do not. So the text “INFINITE” in Figure 1.4(c) is a subset of R?
and therefore an element of 2(R%). By that token, Z(R?) contains a copy
of the page you are reading now.

Thus in addition to containing every imaginable function and every
imaginable black-and-white image, Z(R?) also contains the full text of
every book that was ever written, those that are yet to be written and
those that will never be written. Inside of Z(R?) is a detailed biography of
your life, from beginning to end, as well as the biographies of all of your
unborn descendants. It is startling that the five symbols used to write
P(R?) can express such an incomprehensibly large set.

Homework: Think about Z22(Z2(R?)).

Exercises for Section 1.4
A. Find the indicated sets.

L 2 ({{a.b},{c}}) 7. 7 ({a,b}) x 7 ({0,1})

2. #({1,2,3,4}) 8. Z({1,2} x{3})

8. 7({{2}.5}) 9. 7 ({a,b} x{0})

4. 7 ({R,Q}) 10. {Xxe 2({1,2,3}):1X| =1}

5. 2(2({2}) 11. {X < 2({1,2,3}):1X| <1}

6. 2({1,2})x 2 ({3}) 12. {Xe 2 ({1,2,3}):2e X}
B. Suppose that |A| =m and |B|=n. Find the following cardinalities.

13. | 2(P(P(A))) 17. [{X e 2(A):1X|=1}]

14. | 2(2(A)) 18. | Z(A x Z(B))|

15. | (A x B)| 19. | P(P(P(A x 9)))|

16. |Z(A) x Z(B)| 20. |{X c 2(4):1X| <1}|
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1.5 Union, Intersection, Difference

Just as numbers are combined with operations such as addition, subtrac-
tion and multiplication, there are various operations that can be applied to
sets. The Cartesian product (defined in Section 1.2) is one such operation;
given sets A and B, we can combine them with x to get a new set A xB.
Here are three new operations called union, intersection and difference.

Definition 1.5 Suppose A and B are sets.
The union of A and B is the set AUuB={x:x€A or xeB}.
The intersection of A and B is the set AnB={x:x€A and xeB}.
The difference of A and B is the set A-B={x:x€A and x¢B}.

In words, the union A UB is the set of all things that are in A or in B
(or in both). The intersection A NB is the set of all things in both A and B.
The difference A — B is the set of all things that are in A but not in B.

Example 1.5 Suppose A ={a,b,c,d,e}, B={d,e,f} and C ={1,2,3}.

AuB={a,b,c,d,e,f}
AnB={d,e}
A-B={a,b,c}

={r}

(A—B)U(B—A):{a,b,c,f}
AUC={a,b,c,d,e,1,2,3}

AnC=¢

A-C={a,b,c,d,e}

. (AnC)uA-C)={a,b,c,d,e}

10. (AnB)xB={(d,d),(d,e),(d,f),(e,d),(e,e),(e,f)}

11. (AxC)n(B xC)=1{(d,1),(d,2),(d,3),(e,1),(e,2),(e,3)}

“990.\1.@9‘!*‘9’!\"?‘

Observe that for any sets X and Y it is always true that XuY =Y uX
and XnY =Y nX, but in general X -Y #Y - X.

Continuing the example, parts 12—15 below use the interval notation
discussed in Section 1.1, so [2,5] = {x € R:2 <x <5}, etc. Sketching these
examples on the number line may help you understand them.

12. [2,5]U[3,6]1=[2,6]
13. [2,5]In[3,6]1=1[3,5]
14. [2,5]-1[3,6]1=1[2,3)
15. [0,3]1-[1,2]1=[0,1)u(2,3]
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AUB,

(@) (b)

D

(c)

AnNB

b

Sets

(d)

Figure 1.5. The union, intersection and difference of sets A and B

Example 1.6 Let A = {(x,x?):x € R} be the graph of the equation y = x2
and let B = {(x,x+2): x € R} be the graph of the equation y = x+2. These sets
are subsets of R?. They are sketched together in Figure 1.5(a). Figure 1.5(b)
shows A UB, the set of all points (x,y) that are on one (or both) of the two
graphs. Observe that AnB ={(-1,1),(2,4)} consists of just two elements,
the two points where the graphs intersect, as illustrated in Figure 1.5(c).
Figure 1.5(d) shows A—B, which is the set A with “holes” where B crossed it.
In set builder notation, we could write AUB = {(x,y):x € R,y =x% or y =x+2}

and A-B= {(x,x2):x€[R—{—1,2}}.

Exercises for Section 1.5

1. Suppose A ={4,3,6,7,1,9}, B=15,6,8,4} and C = {5,8,4}. Find:

(a) AuUB d) A-C (g BnC
(b) AnB (e) B-A (h) BuC
(¢c) A-B ® AnC (i) C-B
2. Suppose A ={0,2,4,6,8}, B=1{1,3,5,7} and C = {2,8,4}. Find:
(a) AUB d A-cC (g) BnC
(b) AnB (e) B-A (th) C-A
(c) A-B f) AnC (i) C-B
3. Suppose A ={0,1} and B ={1,2}. Find:
(a) (AxB)n(BxB) (d) (AnB)xA (g) #(A)- Z(B)
(b) (AxB)U(BxB) (e) (AxB)nB (h) #(AnB)
(c) (AxB)-(BxB) ) ZA)n 2 (B) (i) ZAxB)
4. Suppose A ={b,c,d} and B = {a,b}. Find:
(a) (AxB)n(BxB) (d) (AnB)xA (8) Z(A)-2(B)
(b) (AxB)uU(BxB) (e) (AxB)nB (h) Z(AnB)

(¢) (AxB)-(BxB) ) 24)n A B)

(i) Z(A)x Z(B)
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5. Sketch the sets X =[1,3]x[1,3] and Y =[2,4]x[2,4] on the plane R?. On separate
drawings, shade in the sets XuY, XnY, X-Y and Y -X. (Hint: X and Y are
Cartesian products of intervals. You may wish to review how you drew sets
like [1,3]x[1,3] in the exercises for Section 1.2.)

6. Sketch the sets X =[-1,3]1x[0,2] and Y =[0,3]x[1,4] on the plane R2. On
separate drawings, shade in the sets XuY, XnY,X-Y and Y - X.

7. Sketch the sets X ={(x,y)eR?:x2+y? <1} and Y = {(x,y) € R?: x>0} on R%. On
separate drawings, shade in the sets XuY, XnY, X-Y and Y - X.

8. Sketch the sets X ={(x,y)eR?:x2+y? <1} and Y = {(x,y) eR?: -1 <y <0} on R%.
On separate drawings, shade in the sets XuY, XnY, X-Y and Y - X.

9. Is the statement (Rx Z)N(ZxR) = Z x Z true or false? What about the statement
RxZ)U(ZxR)=RxR?

10. Do you think the statement (R—Z)xN=(RxN)—(Z xN) is true, or false? Justify.

1.6 Complement

This section introduces yet another set operation, called the set complement.
The definition requires the idea of a universal set, which we now discuss.

When dealing with a set, we almost always regard it as a subset
of some larger set. For example, consider the set of prime numbers
P =1{2,3,5,7,11,13,...}. If asked to name some things that are not in P, we
might mention some composite numbers like 4 or 6 or 423. It probably
would not occur to us to say that Vladimir Putin is not in P. True, Vladimir
Putin is not in P, but he lies entirely outside of the discussion of what is
a prime number and what is not. We have an unstated assumption that

PcN

because N is the most natural setting in which to discuss prime numbers.
In this context, anything not in P should still be in N. This larger set N is
called the universal set or universe for P.

Almost every useful set in mathematics can be regarded as having
some natural universal set. For instance, the unit circle is the set C =
{(x,y) e R?:x2 + y2 =1}, and since all these points are in the plane R? it is
natural to regard R? as the universal set for C. In the absence of specifics,
if A is a set, then its universal set is often denoted as U. We are now
ready to define the complement operation.

Definition 1.6 Suppose A is a set with a universal set U. The comple-
ment of A, denoted A, is the set A=U-A.
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Example 1.7 If P is the set of prime numbers, then

P=N-P={1,4,6,8,9,10,12,...}.

Thus P is the set of composite numbers.

Example 1.8 Let A = {(x,x%):x €R} be the graph of the equation y = x”.
Figure 1.6(a) shows A in its universal set R2. The complement of A is A =
R?2—A = {(x,y) e R?: y # x?}, illustrated by the shaded area in Figure 1.6(b).

A

(a) (b)

Figure 1.6. A set and its complement

Exercises for Section 1.6

1.

Let A =1{4,3,6,7,1,9} and B = {5,6,8,4} have universal set U={n€Z:0=<n<10}.
(a) A (d) AuA (g) A-B
(b) B (e) A—A (h) AnB
(¢) AnA f A-B (i) AnB
. Let A={0,2,4,6,8} and B ={1,3,5,7} have universal set U= {neZ:0=<n<8}.
(a) A (d) AuA (g AnB
(b) B (e) A-A (h) AnB
() AnA (f) AuB () AxB

. Sketch the set X =[1,3]x[1,2] on the plane R2. On separate drawings, shade in

the sets X, and X n([0,2] x [0, 3]).

. Sketch the set X =[-1,3]x[0,2] on the plane R2. On separate drawings, shade

in the sets X, and X n([-2,4] x [-1, 3]).

. Sketch the set X = {(x,y) € R2:1<x2+y2? <4} on the plane R2. On a separate

drawing, shade in the set X.

. Sketch the set X = {(x,y) e R?: y <x?} on R%. Shade in the set X.
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1.7 Venn Diagrams

In thinking about sets, it is sometimes helpful to draw informal, schematic
diagrams of them. In doing this we often represent a set with a circle
(or oval), which we regard as enclosing all the elements of the set. Such
diagrams can illustrate how sets combine using various operations. For
example, Figures 1.7(a—c) show two sets A and B which overlap in a
middle region. The sets AuUB, AnB and A —B are shaded. Such graphical
representations of sets are called Venn diagrams, after their inventor,
British logician John Venn, 1834-1923.

A B A B A B
(a) (b) (c)

Figure 1.7. Venn diagrams for two sets

Though you are not likely to draw Venn diagrams as a part of a proof
of any theorem, you will probably find them to be useful “scratch work”
devices that help you to understand how sets combine, and to develop
strategies for proving certain theorems or solving certain problems. The
remainder of this section uses Venn diagrams to explore how three sets
can be combined using u and n.

Let’s begin with the set AuBUC. Our definitions suggest this should
consist of all elements which are in one or more of the sets A, B and
C. Figure 1.8(a) shows a Venn diagram for this. Similarly, we think of
ANBNC as all elements common to each of A, B and C, so in Figure 1.8(b)
the region belonging to all three sets is shaded.

C c

A B A B
AuBuUC AnBnC

(a) (b)

Figure 1.8. Venn diagrams for three sets
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We can also think of AnBnC as the two-step operation (AnB)nC. In
this expression the set AnB is represented by the region common to both
A and B, and when we intersect this with C we get Figure 1.8(b). This is
a visual representation of the fact that AnBnC = (AnB)nC. Similarly
we have AnBNC = An(BnC). Likewise, AUBUC = (AuB)UC = Au(BuUCQC).
Notice that in these examples, where the expression either contains only
the symbol U or only the symbol N, the placement of the parentheses is
irrelevant, so we are free to drop them. It is analogous to the situations
in algebra involving expressions (a+b)+c=a+(b+c)or (a-b)-c=a-(b-c).
We tend to drop the parentheses and write simply a+b+c or a-b-c. By
contrast, in an expression like (a + b)-c the parentheses are absolutely
essential because (a +b)-c and a +(b-c) are generally not equal.

Now let’s use Venn diagrams to help us understand the expressions
(AuB)nC and Au(BnC) which use a mix of U and n. Figure 1.9 shows
how to draw a Venn diagram for (AuB)nC. In the drawing on the left, the
set AuB is shaded with horizontal lines while C is shaded with vertical
lines. Thus the set (A UB)NC is represented by the cross hatched region
where AuUB and C overlap. The superfluous shadings are omitted in the
drawing on the right showing the set (AuB)NC.

==

== B

Figure 1.9. How to make a Venn diagram for (AuB)nC.

Now think about A u(BnC). In Figure 1.10 the set A is shaded with
horizontal lines, and BNC is shaded with vertical lines. The union Au(BnC)
is represented by the totality of all shaded regions, as shown on the right.

C

EEZ>

A B A B

Figure 1.10. How to make a Venn diagram for A u(BnC).
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Compare the diagrams for (AuB)nC and Au(BnC) in figures 1.9 and
1.10. The fact that the diagrams are different indicates that (AuB)NnC #
AU(BnNC)in general. Thus an expression such as AuBnNC is absolutely
meaningless because we can’t tell whether it means (AuB)NC or Au(BnC).
In summary, Venn diagrams have helped us understand the following.

Important Points:

« If an expression involving sets uses only U, then parentheses are optional.
« If an expression involving sets uses only N, then parentheses are optional.
o If an expression uses both U and n, then parentheses are essential.

In the next section we will study types of expressions that use only u
or only n. These expressions will not require the use of parentheses.

Exercises for Section 1.7

Draw a Venn diagram for A.

Draw a Venn diagram for B-A.

Draw a Venn diagram for (A -B)nC.

Draw a Venn diagram for (AuB)-C.

Draw Venn diagrams for Au(BnC) and (AuB)N(AuC). Based on your drawings,

do you think Au(BNC) = (AuB)N(AuC(C)?

6. Draw Venn diagrams for An(BuC) and (AnB)n(AuC). Based on your drawings,
do you think An(BuC) = (AnB)U(ANC)?

7. Supp_ose  sets A and B are in a universal set U. Draw Venn diag@ for_ A—n_B
and A UB. Based on your drawings, do you think it’s true that AnB = AuB?

8. Suppose sets A and B are in a universal set U. Draw Venn diagrams for AuB
and A nB. Based on your drawings, do you think it’s true that AuUB = AnB?

A ol

9. Draw a Venn diagram for (AnB)-C.
10. Draw a Venn diagram for (A-B)uC.

Following are Venn diagrams for expressions involving sets A,B and C. Write the
corresponding expression.

C () C C
11. @B 12. @B 13. @B 14. @
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1.8 Indexed Sets

When a mathematical problem involves lots of sets it is often convenient to
keep track of them by using subscripts (also called indices). Thus instead
of denoting three sets as A,B and C, we might instead write them as A{,A,
and As. These are called indexed sets.

Although we defined union and intersection to be operations that
combine two sets, you by now have no difficulty forming unions and
intersections of three or more sets. (For instance, in the previous section
we drew Venn diagrams for the intersection and union of three sets.)
But let’s take a moment to write down careful definitions. Given sets
A1,As,...,A,, the set AyUA3UA3U---UA, consists of everything that is
in at least one of the sets A;. Likewise A{nAsnAszn---NA, consists of
everything that is common to all of the sets A;. Here is a careful definition.

Definition 1.7 Suppose A1,A9,...,A, are sets. Then

A1UAQUA3U---UA, = {x:xeA; for at least one set A;, for 1<i<n},

A1nAanAsn---nA, = {x:xeA; forevery set A;, for 1<i<n}.

But if the number n of sets is large, these expressions can get messy.
To overcome this, we now develop some notation that is akin to sigma
notation. You already know that sigma notation is a convenient symbolism
for expressing sums of many numbers. Given numbers a1,as,as,...,an,
then
n
Zai =ai1tag+tasg+---+a,.
i=1
Even if the list of numbers is infinite, the sum
o0
Zai =ajtagtag+---+a;+---
=1

~

is often still meaningful. The notation we are about to introduce is very

similar to this. Given sets A1,A9,As, ..., A,, we define
n n
UAi=A1UA2UA3U"'UAn and ﬂAi=AlﬂAzﬂA3ﬁ"-ﬁAn.
i=1 i=1

Example 1.9 Suppose A;={0,2,5}, Ay ={1,2,5} and A3 ={2,5,7}. Then

3 3
JAi=A1UA3UA3={0,1,2,5,77 and [JA;=A1nA2nAs={25}.
i=1 i=1
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This notation is also used when the list of sets A1,A9,As, ... is infinite:

Ai=A1UAUA3U--- = {x:x€A; for at least one set A; with 1=<i}.

s

N
Il
—

{x:x€A; for every set A; with 1<i}.

g

~
Il
—

AiZAlﬁAgﬂA3ﬂ---

Example 1.10 This example involves the following infinite list of sets.

A1={-1,0,1}, As={-202}, As={-3,0,8}, - A;={-i,0,il,
Observe that | JA; =7, and () A4; ={0}.
i=1 i=1

Here is a useful twist on our new notation. We can write

3
Ua.= U 4,

i=1 i€{1,2,3}

as this takes the union of the sets A; for i =1,2,3. Likewise:

3
N4 = [ A
i=1 i€{1,2,3}

o0

Ua: = UA;
i=1 1eN

o0

A = A
i=1 ieN

Here we are taking the union or intersection of a collection of sets A;
where i is an element of some set, be it {1,2,3} or N. In general, the way
this works is that we will have a collection of sets A; for i € I, where I is
the set of possible subscripts. The set I is called an index set.

It is important to realize that the set I need not even consist of integers.
(We could subscript with letters or real numbers, etc.) Since we are
programmed to think of i as an integer, let’s make a slight notational
change: we use a, not i, to stand for an element of I. Thus we are dealing
with a collection of sets A, for a € I. This leads to the following definition.

Definition 1.8 If we have a set A, for every a in some index set I, then

U Aa

ael

a = . i .
NA {x:xe€ A, for every set A, with a eI}

ael

{x:x€ A, for at least one set A, with a eI}
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Example 1.11 Here the sets A, will be subsets of R2. Let I =[0,2] =
{xeR:0=<x=<2}. For each number a€l, let A, ={(x,a):xeR,1<x<2}. For
instance, given a =1€1 the set A; ={(x,1):x€R,1<x <2} is a horizontal
line segment one unit above the x-axis and stretching between x =1 and
x =2, as shown in Figure 1.11(a). Likewise A 5={(x,v2):xeR,1<x=<2}is
a horizontal line segment /2 units above the x-axis and stretching between
x=1and x=2. A few other of the A, are shown in Figure 1.11(a) but they
can’t all be drawn because there is one A, for each of the infinitely many
numbers « €[0,2]. The totality of them covers the shaded region in Figure
1.11(b), so this region is the union of all the A,. Since the shaded region
is the set {(x,y) eR%?:1=x<2,0=<y=<2} =[1,2]x[0,2], it follows that

U A.=I[1,21x[0,2].
a€l0,2]

Likewise, since there is no point (x,y) that is in every set A,, we have

[ A.=2.
a€l0,2]
y Yy
2 Ao 21
- A\/§ L U
A
17 A 1t a€l0,2] ¢
1 Aos -
A2
1 1 1 1 x : : 1 1 x
1 1 2

Figure 1.11. The union of an indexed collection of sets

One final comment. Observe that A, =[1,2]x {a}, so the above expres-
sions can be written as

UJ [1,21x{a}=[1,21x[0,2] and M [1,2]1x{a}=9.

a€l0,2] a€l0,2]
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Exercises for Section 1.8
1. Suppose A1 ={a,b,d,e,g,f}, Az ={a,b,c,d}, A3=1{b,d,a} and A= {a,b,h}.
4 4
@ UAai= b) NA;=
i=1 i=1

Ay = {0,2,4,8,10,12,14,16,18,20,22,24},
2. Suppose { Ay = {0,3,6,9,12,15,18,21,24},
As = {0,4,8,12,16,20,24}.
3 3
@ A= (b) NA;=
i=1 i=1
3. For each neN, let A, ={0,1,2,3,...,n}.
@ A= b) NAi=
ieN ieN
4. For each neN, let A, ={-2n,0,2n}.
@ UYAi= (b) NAi=
ieN ieN
5. (@ Yli,i+1]= ) N,i+1l=
ieN 1eN
6. (@ JI0,i+1]= (b) (I0,i+1]=
ieN ieN
7. (@) URx[,i+1]= (b) NRx[i,i+1]=
ieN ieN
8. (a J{a}xI0,11= ) (N {a}xI[0,11=
acR acR
9. (a) U X = (b) m X =
XeZ2(N) Xe2(N)
10. (@) J [x,11x[0,4%]= ®) ) [x11x[0,x%]=
x€[0,1] x€[0,1]

11. Is |JA, = [) A, always true for any collection of sets A, with index set I?

ael ael

12. If | J A, = ) Aq, what do you think can be said about the relationships between
ael ael

the sets A,?

13. If J <1, does it follow that | J Aq <= |J A,? What about () Ag <[ As?

acd acl aed acl




CHAPTER 2

Logic

ogic is a systematic way of thinking that allows us to deduce new infor-

mation from old information. You use logic informally in everyday

life, and certainly also in doing mathematics. For example, suppose you

are working with a certain circle, call it “Circle X,” and you have available
the following two pieces of information.

1. Circle X has radius equal to 3.
2. If any circle has radius r, then its area is 72 square units.

You have no trouble putting these two facts together to get:
3. Circle X has area 97 square units.

In doing this you are using logic to combine existing information to
produce new information. Since a major objective in mathematics is to
deduce new information, logic must play a fundamental role. This chapter
is intended to give you a sufficient mastery of logic.

It is important to realize that logic is a process of deducing information
correctly, not just deducing correct information. For example, suppose we
were mistaken and Circle X actually had a radius of 4, not 3. Let’s look at
our exact same argument again.

1. Circle X has radius equal to 3.
2. If any circle has radius r, then its area is 72 square units.

3. Circle X has area 97 square units.

The sentence “Circle X has radius equal to 3.” is now untrue, and so is our
conclusion “Circle X has area 97 square units.” But the logic is perfectly
correct; the information was combined correctly, even if some of it was
false. This distinction between correct logic and correct information is
significant because it is often important to follow the consequences of an
incorrect assumption. Ideally, we want both our logic and our information
to be correct, but the point is that they are different things.
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In proving theorems, we apply logic to information that is considered
obviously true (such as “Any two points determine exactly one line.”) or is
already known to be true (e.g. the Pythagorean theorem). If our logic is
correct, then anything we deduce from such information will also be true.
(Or at least as true as the “obviously true” information we began with.)

2.1 Statements

The study of logic begins with statements. A statement is a sentence
or a mathematical expression that is either definitely true or definitely
false. You can think of statements as pieces of information that are either
correct or incorrect. Thus statements are pieces of information that we
might apply logic to in order to produce other pieces of information (which
are also statements).

Example 2.1 Here are some examples of statements. They are all true.
If a circle has radius r, then its area is nr? square units.
Every even number is divisible by 2.
2¢eZ
V2¢Z
NcZ
The set {0,1,2} has three elements.

Some right triangles are isosceles.

Example 2.2 Here are some additional statements. They are all false.
All right triangles are isosceles.
5=2
V2¢R
Z<N
{0,1,2}nN=¢@

Example 2.3 Here we pair sentences or expressions that are not state-
ments with similar expressions that are statements.

NOT Statements: Statements:

Add 5 to both sides. Adding 5 to both sides of x—5=37 gives x =42.
Zz 42e”7Z

42 42 is not a number.

What is the solution of 2x =847 | The solution of 2x = 84 is 42.
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Example 2.4 We will often use the letters P, @, R and S to stand for
specific statements. When more letters are needed we can use subscripts.
Here are more statements, designated with letters. You decide which of
them are true and which are false.

P : For every integer n > 1, the number 2" —1 is prime.
@ : Every polynomial of degree n has at most n roots.
R : The function f(x) = x2 is continuous.

Si1:Z<c¢

S9:{0,-1,-2}nN=¢

This way of designating statements with letters is a very useful shorthand.
In discussing a particular statement, such as “The function f(x)= x> is
continuous,” it is convenient to just refer to it as R to avoid having to write
or say it many times.

Statements can contain variables. Here is an example.

P : If an integer x is a multiple of 6, then x is even.

This is a sentence that is true. (All multiples of 6 are even, so no matter
which multiple of 6 the integer x happens to be, it is even.) Since the
sentence P is definitely true, it is a statement. When a sentence or
statement P contains a variable such as x, we sometimes denote it as P(x)
to indicate that it is saying something about x. Thus the above statement
can be expressed as

P(x): If an integer x is a multiple of 6, then x is even.

A statement or sentence involving two variables might be denoted
P(x,y), and so on.

It is quite possible for a sentence containing variables to not be a
statement. Consider the following example.

Q(x): The integer x is even.

Is this a statement? Whether it is true or false depends on just which
integer x is. It is true if x =4 and false if x =7, etc. But without any
stipulations on the value of x it is impossible to say whether Q(x) is true
or false. Since it is not definitely true or definitely false, @(x) is cannot be
a statement. A sentence such as this, whose truth depends on the value
of some variable, is called an open sentence. The variables in an open
sentence (or statement) can represent any type of entity, not just numbers.
Here is an open sentence where the variables are functions.
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R(f,g): The function f is the derivative of the function g.

This open sentence is true if f(x) = 2x and g(x) = x2. It is false if f(x) =«3
and g(x) = x2, etc. We point out that a sentence such as R(f,g) (that
involves variables) can be denoted either as R(f,g) or just R. We use the
expression R(f,g) when we want to emphasize that the sentence involves
variables.

We will have more to say about open sentences later, but for now let’s
return to statements.

Statements are everywhere in mathematics. Any result or theorem
that has been proved true is a statement. The quadratic formula and the
Pythagorean theorem are both statements:

-b+VbZ-4ac

P: The solutions of the equation ax?+bx+c=0 are x = 5
a

Q: If a right triangle has legs of lengths a and b and hypotenuse of
length ¢, then a2 + b2 = ¢2.

Here is a very famous statement, so famous, in fact, that it has a name.
It is called Fermat’s Last Theorem after Pierre Fermat, a seventeenth
century French mathematician who scribbled it in the margin of a notebook.

R : For all numbers a,b,c,n € N with n > 2, it is the case that a +b™ # c".

Fermat believed this statement was true. He noted that he could prove
it was true, except his notebook’s margin was too narrow to contain his
proof. It is doubtful that he really had a correct proof in mind, for after his
death generations of brilliant mathematicians tried unsuccessfully to prove
that his statement was true (or false). Finally, in 1993, Andrew Wiles of
Princeton University announced that he had devised a proof. Wiles had
worked on the problem for over seven years, and his proof runs through
hundreds of pages. The moral of this story is that some true statements
are not obviously true.

Here is another statement famous enough to be named. It was first
posed in the eighteenth century by the German mathematician Christian
Goldbach, and thus is called the Goldbach Conjecture:

S : Every even integer greater than 2 is a sum of two prime numbers.

You must agree that S is either true or false. It appears to be true, because
when you examine even numbers that are bigger than 2, they seem to
be sums of two primes: 4=2+2, 6=3+3, 8=3+5, 10=5+5, 12=5+7,
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100=17+83, and so on. But that’s not to say there isn’t some large even
number that’s not the sum of two primes. If such a number exists, then S
is false. The thing is, in the over 260 years since Goldbach first posed this
problem, no one has been able to determine whether it’s true or false. But
since it is clearly either true or false, S is a statement.

This book is about the methods that can be used to prove that S (or
any other statement) is true or false. To prove that a statement is true,
we start with obvious statements (or other statements that have been
proven true) and use logic to deduce more and more complex statements
until finally we obtain a statement such as S. Of course some statements
are more difficult to prove than others, and S appears to be notoriously
difficult; we will concentrate on statements that are easier to prove.

But the point is this: In proving that statements are true, we use logic
to help us understand statements and to combine pieces of information
to produce new pieces of information. In the next several sections we
explore some standard ways that statements can be combined to form new
statements.

Exercises for Section 2.1

Decide whether or not the following are statements. In the case of a statement,
say if it is true or false, if possible.

Every real number is an even integer.

Every even integer is a real number.

If x and y are real numbers and 5x =5y, then x=y.
Sets Z and N.

Sets Z and N are infinite.

Some sets are finite.

. The derivative of any polynomial of degree 5 is a polynomial of degree 6.
. N¢ Z(N).

. cos(x)=-1

. RxN)N(NxR)=NxN

. The integer x is a multiple of seven.

© 0 NS PR ® NS

pd ke
N = O

. If the integer x is a multiple of seven, then it is divisible by seven.

[a—y
w

. Either x is a multiple of seven, or it is not.

[u—y
'

. Call me Ishmael.
. In the beginning, God created the heaven and the earth.

[y
9]}
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2.2 And, Or, Not

The word “and” can be used to combine two statements to form a new
statement. Consider for example the following sentence.

R1: The number 2 is even and the number 3 is odd.

We recognize this as a true statement, based on our common-sense under-
standing of the meaning of the word “and.” Notice that R; is made up of
two simpler statements:

P : The number 2 is even.
Q : The number 3 is odd.

These are joined together by the word “and” to form the more complex
statement R;. The statement R; asserts that P and @ are both true. Since
both P and @ are in fact true, the statement R; is also true.

Had one or both of P and @ been false, then R; would be false. For
instance, each of the following statements is false.

Rs: The number 1 is even and the number 3 is odd.
R3: The number 2 is even and the number 4 is odd.
R4 : The number 3 is even and the number 2 is odd.

From these examples we see that any two statements P and @ can
be combined to form a new statement “P and @.” In the spirit of using
letters to denote statements, we now introduce the special symbol A to
stand for the word “and.” Thus if P and @ are statements, P AQ stands
for the statement “P and @.” The statement P AQ is true if both P and @
are true; otherwise it is false. This is summarized in the following table,
called a truth table.

[P

"j"q'ﬂ'ﬂﬂ

NN
IR

In this table, T stands for “True,” and F stands for “False.” (T' and F are
called truth values.) Each line lists one of the four possible combinations
or truth values for P and @, and the column headed by P AQ tells whether
the statement P AQ is true or false in each case.
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Statements can also be combined using the word “or.” Consider for
example the following four statements.

S1: The number 2 is even or the number 3 is odd.
Ss: The number 1 is even or the number 3 is odd.
S3: The number 2 is even or the number 4 is odd.
S4: The number 3 is even or the number 2 is odd.

In mathematics, the assertion “P or @” is always understood to mean that
one or both of P and @ is true. Thus statements Si, Sg, S3 are all true,
while S4 is false. The symbol v is used to stand for the word “or.” So if P
and @ are statements, P v @ represents the statement “P or @.” Here is
the truth table.

h:ﬁ:ssﬂ

’H'ﬂ'ﬁ'ﬂa
~
<
P

N R

It is important to be aware that the meaning of “or” expressed in
the above table differs from the way it is sometimes used in everyday
conversation. For example, suppose a university official makes the following
threat:

You pay your tuition or you will be withdrawn from school.

You understand that this means that either you pay your tuition or you
will be withdrawn from school, but not both. In mathematics we never use
the word “or” in such a sense. For us “or” means exactly what is stated
in the table for v. Thus P v @ being true means one or both of P and @ is
true. If we ever need to express the fact that exactly one one of P and @
is true, we use one of the following constructions.

P or @, but not both.
Either P or Q.

If the university official were a mathematician, he might have qualified
his statement in one of the following ways.

Pay your tuition or you will be withdrawn from school, but not both.

Either you pay your tuition or you will be withdrawn from school.
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To conclude this section, we mention another way of obtaining new
statements from old ones. Given any statement P, we can form the new
statement “It is not true that P.” For example consider the following
statement.

The number 2 is even.

This statement is true. Now change it by inserting the words “It is not
true that” at the beginning:

It is not true that the number 2 is even.

This new statement is false.

For another example, starting with the false statement “2 € @,” we get
the true statement “It is not true that 2€ ¢.”

We use the symbol ~ to stand for the words “It’s not true that,” so
~ P means “It’s not true that P.” We often read ~ P simply as “not P.”
Unlike A and v, which combine two statements, the symbol ~ just alters
a single statement. Thus its truth table has just two lines, one for each
possible truth value of P.

PP
T F
Fl| T

The statement ~ P is called the negation of P. The negation of a
specific statement can be expressed in numerous ways. Consider

P : The number 2 is even.
Here are several ways of expressing its negation.

~ P : It’s not true that the number 2 is even.
~ P : It is false that the number 2 is even.
~ P : The number 2 is not even.

In this section we’ve learned how to combine or modify statements with
the operations A, v and ~. Of course we can also apply these operations
to open sentences or a mixture of open sentences and statements. For
example, (x is an even integer) A(3 is an odd integer) is an open sentence
that is a combination of an open sentence and a statement.
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Exercises for Section 2.2

Express each statement or open sentence in one of the forms PAQ, Pv @, or ~P.

Be sure to also state exactly what statements P and @ stand for.

. The number 8 is both even and a power of 2.

. The matrix A is not invertible.

c XYy 4, x<y 5. y=x

. There is a quiz scheduled for Wednesday or Friday.

. The number x equals zero, but the number y does not.

. At least one of the numbers x and y equals 0.

. x€A-B 10. x€e AUB 11. Ae{XeP(N):|X|<oo}

12. Happy families are all alike, but each unhappy family is unhappy in its own
way. (Leo Tolstoy, Anna Karenina)

13. Human beings want to be good, but not too good, and not quite all the time.
(George Orwell)

14. A man should look for what is, and not for what he thinks should be.
(Albert Einstein)

© X 30 W N =

2.3 Conditional Statements

There is yet another way to combine two statements. Suppose we have in
mind a specific integer a. Consider the following statement about a.

R : If integer a is a multiple of 6, then «a is divisible by 2.

We immediately spot this as a true statement based on our knowledge of
integers and the meanings of the words “if” and “then.” If integer a is a
multiple of 6, then a is even, so therefore a is divisible by 2. Notice that R
is built up from two simpler statements:

P : Integer a is a multiple of 6.
® : Integer a is divisible by 2.
R: If P, then Q.

In general, given any two statements P and @ whatsoever, we can form
the new statement “If P, then @.” This is written symbolically as P = @
which we read as “If P, then @Q.” or “P implies @.” Like A and v, the
symbol = has a very specific meaning. When we assert that the statement
P = @ is true, we mean that if P is true then @ must also be true. (In
other words we mean that the condition P being true forces @ to be true.)
A statement of form P = @ is called a conditional statement because it
means @ will be true under the condition that P is true.
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You can think of P => @ as being a promise that whenever P is true, @
will be true also. There is only one way this promise can be broken (i.e.
be false) and that is if P is true but @ is false. Thus the truth table for
the promise P = @ is as follows.

|

|

[P=9]

Q
T
F
T
F

oSN
NN

Perhaps you are bothered by the fact that P = @ is true in the last two
lines of this table. Here’s an example to convince you that the table is
correct. Suppose your professor makes the following promise:

If you pass the final exam, then you will pass the course.
Your professor is making the promise

(You pass the exam) = (You pass the course).

Under what circumstances did she lie? There are four possible scenarios,
depending on whether or not you passed the exam and whether or not you
passed the course. These scenarios are tallied in the following table.

You pass exam | You pass course H (You pass exam) = (You pass course)

T T T
T F F
F T T
F F T

The first line describes the scenario where you pass the exam and you
pass the course. Clearly the professor kept her promise, so we put a 7' in
the third column to indicate that she told the truth. In the second line,
you passed the exam but your professor gave you a failing grade in the
course. In this case she broke her promise, and the F in the third column
indicates that what he said was untrue.

Now consider the third row. In this scenario you failed the exam but
still passed the course. How could that happen? Maybe your professor felt
sorry for you. But that doesn’t make her a liar. Her only promise was that
if you passed the exam then you would pass the course. She did not say
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passing the exam was the only way to pass the course. Since she didn’t
lie, then she told the truth, so there is a T in the third column.

Finally look at the fourth row. In that scenario you failed the exam
and you failed the course. Your professor did not lie; she did exactly what
she said she would do. Hence the T in the third column.

In mathematics, whenever we encounter the construction “If P, then
Q” it means exactly what the truth table for = expresses. But of course
there are other grammatical constructions that also mean P = @. Here is
a summary of the main ones.

If P, then Q.

Q if P.

® whenever P.

®, provided that P.

Whenever P, then also Q.

P is a sufficient condition for Q.
For @, it is sufficient that P.

@ is a necessary condition for P.
For P, it is necessary that Q.

P only if @.

* P=>Q

These can all be used in the place of (and mean exactly the same thing as)
“If P then @.” You should analyze the meaning of each one and convince
yourself that it captures the meaning of P = @. For example, P = @ means
the condition of P being true is enough (i.e. sufficient) to make @ true;
hence “P is a sufficient condition for @.”

The wording can be tricky. Often an everyday situation involving a
conditional statement can help clarify it. For example, consider your
professor’s promise:

(You pass the exam) = (You pass the course)

This means that your passing the exam is a sufficient (though perhaps
not necessary) condition for your passing the course. Thus your professor
might just as well have phrased her promise in one of the following ways.

Passing the exam is a sufficient condition for passing the course.
For you to pass the course, it is sufficient that you pass the exam.
However when we want to say “If P, then @” in everyday conversation,
we do not normally express this as “Q is a necessary condition for P” or

“P only if @.” But such constructions are not uncommon in mathematics.
To understand why they make sense, notice that P = @ being true means
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that it’s impossible that P is true but @ is false, so in order for P to be
true it is necessary that @ is true; hence “Q is a necessary condition for
P.” And this means that P can only be true if @ is true, i.e. “P only if Q.”

Exercises for Section 2.3

Without changing their meanings, convert each of the following sentences into a
sentence having the form “If P, then Q.”

. A matrix is invertible provided that its determinant is not zero.

. For a function to be continuous, it is sufficient that it is differentiable.
. For a function to be integrable, it is necessary that it is continuous.

. A function is rational if it is a polynomial.

. An integer is divisible by 8 only if it is divisible by 4.

. Whenever a surface has only one side, it is non-orientable.

. A series converges whenever it converges absolutely.

. A geometric series with radius r converges if |r| < 1.

© W S kWD

. A function is integrable provided the function is continuous.

[y
(=)

. The discriminant is negative only if the quadratic equation has no real solutions.

[y
[y

. You fail only if you stop writing. (Ray Bradbury)

e
N

. People will generally accept facts as truth only if the facts agree with what
they already believe. (Andy Rooney)

13. Whenever people agree with me I feel I must be wrong. (Oscar Wilde)

2.4 Biconditional Statements

It is important to understand that P = @ is not the same as @ = P. To see
why, suppose that a is some integer and consider the statements

(a is a multiple of 6) = (a is divisible by 2)
(a is divisible by 2) = (a is a multiple of 6).

The first statement asserts that if ¢ is a multiple of 6 then a is divisible by
2. This is clearly true, for any multiple of 6 is even and therefore divisible
by 2. The second statement asserts that if a is divisible by 2 then it is
a multiple of 6. This is not necessarily true, for a = 4 (for instance) is
divisible by 2 yet not a multiple of 6. Therefore the meanings of P = @ and
@ = P are in general quite different. The conditional statement @ = P is
called the converse of P = @, so a conditional statement and its converse
express entirely different things.
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But sometimes, if P and @ are just the right statements, it can happen
that P = @ and @ = P are both necessarily true. For example, consider
the statements

(a is even) = (a is divisible by 2)

(a is divisible by 2) = (a is even).

No matter what value a has, both of these statements are true. Since both
P =@ and @ = P are true, it follows that (P = Q) A(Q = P) is true.

We now introduce a new symbol < to express the meaning of the
statement (P = Q) A(Q = P). The expression P < @ is understood to have
exactly the same meaning as (P = @) A(Q = P). According to the previous
section, @ => P is read as “P if @,” and P = @ can be read as “P only if Q.”
Therefore we pronounce P < @ as “P if and only if @.” For example, given
an integer a, we have the true statement

(a is even) < (a is divisible by 2)

which we can read as “Integer a is even if and only if a is divisible by 2.”

The truth table for < is shown below. Notice that in the first and last
rows, both P = @ and @ = P are true (according to the truth table for
=), s0 (P => Q)A(Q = P) is true, and hence P < Q is true. However in the
middle two rows one of P = @ or @ = P is false, so (P = Q)A(Q = P) is false,
making P & @ false.

PlefPeq]
T[T T
T/ F|| F
FlT| F
FIF| T

Compare the statement R :(a is even) < (a is divisible by 2) with this
truth table. If a is even then the two statements on either side of
are true, so according to the table R is true. If a is odd then the two
statements on either side of < are false, and again according to the table
R is true. Thus R is true no matter what value a has. In general, P < @
being true means P and @ are both true or both false.

Not surprisingly, there are many ways of saying P < @ in English. The
following constructions all mean P < Q.
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P if and only if @.

P is a necessary and sufficient condition for .
For P it is necessary and sufficient that @.

If P, then @, and conversely.

Po@

The first three of these just combine constructions from the previous
section to express that P > @ and @ = P. In the last one, the words “...and
conversely” mean that in addition to “If P, then @” being true, the converse
statement “If @, then P” is also true.

Exercises for Section 2.4

Without changing their meanings, convert each of the following sentences into a
sentence having the form “P if and only if Q.”
1. For matrix A to be invertible, it is necessary and sufficient that its det(A) # 0.

2. If a function has a constant derivative then it is linear, and conversely.

e

If xy =0 then x =0 or y =0, and conversely.
If a € Q then 5a € Q, and if 5a € Q then a € Q.

For an occurrence to become an adventure, it is necessary and sufficient for
one to recount it. (Jean-Paul Sartre)

ok

2.5 Truth Tables for Statements

You should now know the truth tables for A, v, ~, = and <. They should
be internalized as well as memorized. You must understand the symbols
thoroughly, for we now combine them to form more complex statements.

For example, suppose we want to convey that one or the other of P and
® is true but they are not both true. No single symbol expresses this, but
we could combine them as

Pve@)A~([PAQ)
which literally means:

P or @ is true, and it is not the case that both P and @ are true.

This statement will be true or false depending on the truth values of P
and @. In fact we can make a truth table for the entire statement. Begin
as usual by listing the possible true/false combinations of P and @ on four
lines. The statement (P v Q)A ~ (P A Q) contains the individual statements
(Pv@®) and (P AQ), so we next tally their truth values in the third and
fourth columns. The fifth column lists values for ~ (P AQ), and these
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are just the opposites of the corresponding entries in the fourth column.
Finally, combining the third and fifth columns with A, we get the values
for (Pv@)A ~(P AQ) in the sixth columns.

Pl @ve [ Pr@ | ~@r@) [ Pv@r~PrQ)
T|T T T F F
T |F T F T T
F|T T F T T
F|F F F T F

This truth table tells us that (P v@Q)A ~ (P AQ) is true precisely when
one but not both of P and @ are true, so it has the meaning we intended.
(Notice that the middle three columns of our truth table are just “helper
columns” and are not necessary parts of the table. In writing truth tables,
you may choose to omit such columns if you are confident about your work.)

For another example, consider the following familiar statement con-
cerning two real numbers x and y:

The product xy equals zero if and only if x=0 or y =0.

This can be modeled as (xy=0)< (x=0 v y=0). If we introduce letters
P,Q and R for the statements xy =0, x =0 and y =0, it becomes P < (@ VR).
Notice that the parentheses are necessary here, for without them we
wouldn’t know whether to read the statement as P < (Q VR) or (P < Q)VR.

Making a truth table for P < (@ vR) entails a line for each T/F combina-
tion for the three statements P, @ and R. The eight possible combinations
are tallied in the first three columns of the following table.

PIQ|R| QR | Po@VR)
rirlr] r T
Tir|F| T

T|rlT| T T
T|F|F| F F
Flr|r| T F
FlT|F| T F
Flr|T| T F
FlF|F| F T

We fill in the fourth column using our knowledge of the truth table for
v. Finally the fifth column is filled in by combining the first and fourth
columns with our understanding of the truth table for <. The resulting
table gives the true/false values of P < (@ v R) for all values of P,Q and R.
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Notice that when we plug in various values for x and y, the statements
P:xy=0,Q:x=0and R :y=0 have various truth values, but the statement
P < (Q vR) is always true. For example, if x =2 and y =3, then P,@ and R
are all false. This scenario is described in the last row of the table, and
there we see that P < (@ VR) is true. Likewise if x=0 and y =7, then P
and @ are true and R is false, a scenario described in the second line of
the table, where again P < (@ v R) is true. There is a simple reason why
P < (QVR) is true for any values of x and y. It is that P & (Q vVR) represents
(xy=0 o (x=0 v y=0), which is a true mathematical statement. It is
absolutely impossible for it to be false.

This may make you wonder about the lines in the table where P < (Q VR)
is false. Why are they there? The reason is that P < (Q vR) can also
represent a false statement. To see how, imagine that at the end of the
semester your professor makes the following promise.

You pass the class if and only if you get an “A” on the final or you get
a “B” on the final.

This promise has the form P < ( VR), so its truth values are tabulated in
the above table. Imagine it turned out that you got an “A” on the exam
but failed the course. Then surely your professor lied to you. In fact, P is
false, @ is true and R is false. This scenario is reflected in the sixth line
of the table, and indeed P < (® v R) is false (i.e. it is a lie).

The moral of this example is that people can lie, but true mathematical
statements never lie.

We close this section with a word about the use of parentheses. The
symbol ~ is analogous to the minus sign in algebra. They both negate the
expression that they precede. Thus ~P v@Q means (~P)v @, not ~(PVvQ).
In ~ (P v @), the value of the entire expression P v Q is negated.

Exercises for Section 2.5

Write a truth table for the logical statements in problems 1-9:

1. Pv(@=>R) 4, ~(PvQ@)v(~P) 7. PA~P)=>Q
2. QVR)o (RAQ®) 5. (PA~P)v@ 8. Pv(QA~R)
3. ~(P=>Q) 6. PA~P)AQ 9. ~(~Pv~Q)

10. Suppose the statement (P AQ) Vv R)= (R Vv S) is false. Find the truth values of
P,Q,R and S. (This can be done without a truth table.)

11. Suppose P is false and that the statement (R = S) © (P AQ) is true. Find the
truth values of R and S. (This can be done without a truth table.)
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2.6 Logical Equivalence

In contemplating the truth table for P < @, you probably noticed that
P < @ is true exactly when P and @ are both true or both false. In other
words, P < @ is true precisely when at least one of the statements P AQ
or ~PA ~@Q is true. This may tempt us to say that P < @ means the same
thing as (PAQ)V(~PA~@).

To see if this is really so, we can write truth tables for P < @ and
PAQRQ)V(~PA~Q). In doing this, it is more efficient to put these two
statements into the same table, as follows. (This table has helper columns
for the intermediate expressions ~P, ~@, (P AQ) and (~PA~@Q).)

Pl[~P[~@|®Pr@ | ~Pr~@[[Pr@Vv(-Pr~@) |P=Qq]
T|T F F T F T T
T |F F T F F F F
F | T T F F F F F
F | F T T F T T T

The table shows that P < @ and (P AQ)V(~PA ~@Q) have the same truth
value, no matter what values P and @ may have. It is as if P © @ and
(PAQ)Vv(~PA ~@) are algebraic expressions that are equal no matter what
is “plugged into” variables P and @. We express this state of affairs by
writing

PoQ = (PAQ)V(~PA~Q)

and saying that P < @ and (P AQ)Vv(~PA ~@Q) are logically equivalent.
In general, two statements are logically equivalent if their truth
values match up line-for-line in a truth table.
Logical equivalence is important because it can give us different (and
potentially useful) ways of looking at the same thing. As an example, the
following table shows that P = @ is logically equivalent to (~ Q)= (~ P).

rlef-pl-Q[c@=cP[P=0]
T[T F | F T T
T|F||F | T F F
Flr| 1T | F T T
FIF| 1T |T T T

The fact that P > @ is logically equivalent to (~ @) = (~ P) is especially
important because so many theorems are statements having the form
P = Q. As we will see in Chapter 5, proving such a theorem may be easier
if we express it in the logically equivalent form (~ Q)= (~ P).
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There are two other pairs of logically equivalent statements that we
will encounter again and again throughout this book and beyond. They
come up so often that they have a special name: DeMorgan’s Laws.

Fact 2.1 (DeMorgan’s Laws)
1. ~(PAQ) = (~P)V(~Q)
2. ~(PVv@Q) = (~P)A(~Q)

The first of DeMorgan’s laws is verified by the following table. You are
asked to verify the second in one of the exercises.

Pl@[~P[~Q|Pr@[~Pr@ | -P)V(-Q
T|T| F F T F F
T|F| F T F T T
F|T| T | F F T T
F|F| T T F T T

DeMorgan’s laws are actually very natural and intuitive. Consider the
statement ~ (P A @), which we can interpret as meaning that it is not the
case that both P and Q are true. If it is not the case that both P and @
are true, then at least one of P or @ is false, in which case (~P)Vv(~@Q) is
true. Thus ~ (P AQ) means the same thing as (~P) Vv (~ Q).

DeMorgan’s laws can be very useful. Suppose we happen to know that
some statement having form ~ (P v Q) is true. The second of DeMorgan’s
laws tells us that (~ @) A(~ P) is also true, hence ~ P and ~ @ are both true
as well. Being able to quickly obtain such additional pieces of information
can be extremely useful.

Exercises for Section 2.6

A. Use truth tables to show that the following statements are logically equivalent.
1. PA@QVR)=(PAQ)V(PAR) 5. ~(PVQVR) = (~P)A(~Q)A(~R)
2. PVQAR)=(PVQ)A(PVR) 6. ~(PAQAR) = (~P)V(~Q)V(~R)
3. P>Q=(~P)vQ 7. P=>Q = (PA~Q)>(QN~Q)
4. ~(PvQ) = (~P)A(~Q) 8. ~Po@Q=P=>~QA(~Q=>P)

B. Decide whether or not the following pairs of statements are logically equivalent.
9. PAQ and ~(~Pv ~@Q) 11. (~P)A(P=>@Q) and ~(Q=>P)
10. P=>Q)VR and ~(PA~QA~R) 12. ~(P=Q) and PA~Q
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2.7 Quantifiers

Using symbols A, v, ~, = and <, we can deconstruct many English
sentences into a symbolic form. As we have seen, this symbolic form can
help us understand the logical structure of sentences and how different
sentences may actually have the same meaning (as in logical equivalence).

But these five symbols alone are not powerful enough to capture the
full meaning of every mathematical statement. To begin to overcome this
defect, we now introduce two new symbols that correspond to English
phrases that occur often in mathematics. The symbol “v” stands for the
phrase “For all” or “ For every,” and the symbol “3” stands for the phrase
“There exists a” or “There is a.” Thus the statement

For every ne€z, 2n is even.
can be expressed as
VneZ,2n is even.
If we let E(x) stand for “x is even,” then this becomes
VneZ,E2n).
Likewise, a statement such as
There exists a subset X of N for which |X|=5.
can be translated as
X, X<SN)A(X|=5) or 3IXcN,|X[=5 or 3IXeHAN),|X|=5.

The symbols V and 3 are called quantifiers because they refer in some
sense to the quantity (i.e. all or some) of the variable that follows them.
Symbol V is called the universal quantifier and 3 is called the existen-
tial quantifier. Statements which contain them are called quantified
statements. A statement beginning with V is called a universally quan-
tified statement, and one beginning with 3 is called an existentially
quantified statement.

Example 2.5 The following English statements are paired with their
translations into symbolic form.

Every integer that is not odd is even.
VneZ ~(nisodd)=>(niseven) or VneZ,~O0n)=>En)

There is an integer that is not even.
dneZ,~En)
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For every real number x, there is a real number y for which y3 = x.
VxeR,IyeR,y3 =«

Given any two rational numbers a and b, it follows that ab is rational.
Va,beQ,abeq.

Given a set S (such as, but not limited to, N, Z, Q etc.), a quantified
statement of form Vx e S,P(x) is understood to be true if P(x) is a true
for every x € S. If there is at least one x € S for which P(x) is false, then
Vxe€S,P(x) is a false statement. Similarly, 3x € S, P(x) is true provided that
P(x) is true for at least one element x € S; otherwise it is false. Thus each
statement in Example 2.5 is true. Here are some examples of quantified
statements that are false.

Example 2.6 The following false quantified statements are paired with
their translations.

Every integer is even.
VneZ,E(n)

There is an integer n for which n? = 2.
dnezZ,n?=2

For every real number x, there is a real number y for which y? = x.
VxeR,IyeR,y?2 =«

Given any two rational numbers a and b, it follows that vab is rational.

Va,beQ,vabeqQ.

Example 2.7 When a statement contains two quantifiers you must be
very alert to their order, for reversing the order can change the meaning.
Consider the following statement from Example 2.5.

VxeR,AyeR,y>=x

This statement is true, for no matter what number x is there exist a
number y = ¢/x for which y? =x. Now reverse the order of the quantifiers
to get the new statement

JyeR,VxeR,y3 =x.

This new statement says that there exists a particular number y with
the property that y2 = x for every real number x. Since no number y can
have this property, the statement is false. The two statements above have
entirely different meanings.
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Quantified statements are often misused in casual conversation. Per-
haps you’ve heard someone say something like “All students do not pay
full tuition.” when they mean “Not all students pay full tuition.” While
the mistake is perhaps marginally forgivable in casual conversation, it
must never be made in a mathematical context. Do not say “All integers
are not even.” because that means “All integers are odd.” Instead, say “Not

all integers are even.”

Exercises for Section 2.7

Write the following as English sentences. Say whether the statements are true
or false.

1. VxeR,x2>0 6. IneN,YX e ZIN),|X|<n
2. VxeR,IneN,x" =0 7. VXcN,3nezZ,|X|=n
3. JaeR,VxeR,ax=x 8. Vnez, AXcN,|X|=n
4, VXe ZN),XcR 9. VneZ,AmeZ,m=n+5
5. VneN,3X e ZN),|X|<n 10. AmeZ,VYneZ,m=n+5

2.8 More on Conditional Statements

It is time to address a very important point about conditional statements
that contain variables. To motivate this, let’s return to the following
example concerning integers x.

(x is a multiple of 6) = (x is even)

As noted earlier, since every multiple of 6 is even, this is a true statement
no matter what integer x is. We could even underscore this fact by writing

this true statement as
VxeZ,(x is a multiple of 6) = (x is even)
But now switch things around to get the different statement
(x is even) = (x is a multiple of 6)

This is true for some values of x such as -6, 12, 18, etc., but false for
others (such as 2, 4, etc.). Thus we do not have a statement, but rather an
open sentence. (Recall from Section 2.1 that an open sentence is a sentence
whose truth value depends on the value of a certain variable or variables.)
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However, by putting a universal quantifier in front we get
VxeZ, (xis even) = (x is a multiple of 6),

which is definitely false, so this new expression is a statement, not an open
sentence. In general, given any two open sentences P(x) and Q(x) about
integers x, the expression Vx € Z,P(x) = Q(x) is either true or false, so it is
a statement, not an open sentence.

Now we come to the very important point. In mathematics, whenever
P(x) and Q(x) are open sentences concerning elements x in some set S
(depending on context), an expression of form P(x) = Q(x) is understood
to be the statement Vx € S,P(x) = Q(x). In other words, if a conditional
statement is not explicitly quantified then there is an implied universal
quantifier in front of it. This is done because statements of the form
Vx€eS,P(x)=> Q(x) are so common in mathematics that we would get tired
of putting the Vx €S in front of them.

Thus the following sentence is a true statement (as it is true for all x).
If x is a multiple of 6, then x is even.

Likewise, the next sentence is a false statement (as it is not true for all x).
If x is even, then x is a multiple of 6.

This leads to the following significant interpretation of a conditional
statement, which is more general than (but consistent with) the interpre-
tation from Section 2.3.

Definition 2.1 If P and @ are statements or open sentences, then the
sentence

“If P, then Q.”

is a statement. This statement is true if it’s impossible for P to be true
while @ is false. It is false if there is at least one instance in which P is
true but @ is false.

Thus the following are true statements.

If x€R, then x2+1>0.

If function f is differentiable on R, then f is continuous on R.
Likewise, the following are false statements.

If p is a prime number, then p is odd. (2 is prime)

If f is a rational function, then f has an asymptote. (x? is rational)
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2.9 Translating English to Symbolic Logic

In writing (and reading) proofs of theorems, we must always be alert to the
logical structure and meanings of the sentences. Sometimes it is necessary
or helpful to parse them into expressions involving logic symbols. This may
be done mentally or on scratch paper, or occasionally even explicitly within
the body of a proof. The purpose of this section is to give you sufficient
practice in translating English sentences into symbolic form so that you
can better understand their logical structure. Here are some examples.

Example 2.8 Consider the Mean Value Theorem from Calculus:

If f is continuous on the interval [a,b] and differentiable on (a,b), then
there is a number c € (a,b) for which f'(c) = %.

Here is a translation to symbolic form.

((F cont. on [a,b]) A(f is diff. on (a,b))) = (Ic e (a,b),f'(c) = LGL),

Example 2.9 Consider Goldbach’s Conjecture, from Section 2.1:
Every even integer greater than 2 is the sum of two primes.

This can be translated in the following ways, where P denotes the set of
prime numbers and S = {4,6,8,10,...} is the set of even integers greater
than 2.

(neS)=(3p,geP,n=p+q)
VneS,ip,qeP,n=p+q
These translations of Goldbach’s conjecture illustrate an important
point. The first has the basic structure (n € S) = @(n) and the second has
structure V n € S,Q(n), yet they have exactly the same meaning. This is

significant. Every universally quantified statement can be expressed as a
conditional statement.

Fact 2.2 Suppose S is a set and Q(x) is a statement about x for each
x € 8S. The following statements mean the same thing.

VxeS,Q(x)
(xeS)=Q(x)
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This fact is significant because so many theorems have the form of
a conditional statement. (The Mean Value Theorem is an example!) In
proving a theorem we have to think carefully about what it says. Sometimes
a theorem will be expressed as a universally quantified statement but it will
be more convenient to think of it as a conditional statement. Understanding
the above fact allows us to switch between the two forms.

We close this section with one final point. In translating a state-
ment, be attentive to its intended meaning. Don’t jump into, for example,
automatically replacing every “and” with A and “or” with v. An example:

At least one of the integers x and y is even.

Don’t be led astray by the presence of the word “and.” The meaning of
the statement is that one or both of the numbers is even, so it should be
translated with “or,” not “and.”

(x is even) v (y is even)

Exercises for Section 2.9

Translate each of the following sentences into symbolic logic.

1. If £ is a polynomial and its degree is greater than 2, then f’ is not constant.
. The number x is positive but the number y is not positive.

. If x is prime then /x is not a rational number.

. For every prime number p there is another prime number ¢ with g > p.

O W

. For every positive number ¢, there is a positive number § for which |x—a|<§
implies |f(x)— f(a)| <E&.
6. For every positive number ¢ there is a positive number M for which |f(x)-b| <&,
whenever x > M.
7. There exists a real number a for which a +x = x for every real number x.

o

. I don’t eat anything that has a face.
9. If x is a rational number and x # 0, then tan(x) is not a rational number.
10. If sin(x) <0, then it is not the case that 0<x <.

11. There is a Providence that protects idiots, drunkards, children and the United
States of America. (Otto von Bismarck)

12. You can fool some of the people all of the time, and you can fool all of the people
some of the time, but you can’t fool all of the people all of the time. (Abraham
Lincoln)

13. Everything is funny as long as it is happening to somebody else. (Will Rogers)
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2.10 Negating Statements

Given a statement R, the statement ~ R is called the negation of R. If
R is a complex statement, then it is possible that its negation ~ R can be
written in a simpler or more useful form. The process of correctly finding
this form is called negating R. In proving theorems it is often necessary
to negate certain statements. We now investigate how to do this.

We have already examined part of this topic. DeMorgan’s Laws

~(PAQ)
~PveR)

(~P)v(~Q) 2.1)
(~P)A(~Q) (2.2)

(from Section 2.6) can be viewed as rules that tell us how to negate the
statements PAQ and P v @. Here are some examples that illustrate how
DeMorgan’s laws are used to negate statement involving “and” or “or.”

Example 2.10 Consider the problem of forming the negation of the
following statement.

R : You can solve it by factoring or with the quadratic formula.

Now, R means (You can solve it by factoring) v (You can solve it with Q.F.),
which we will denote as P v®. The negation of this is

~Pve) = (~PIAN~Q)

Therefore the negation of R is

~R: You can’t solve it by factoring and you can’t solve it with
the quadratic formula.

If you can find ~ R without referring to DeMorgan’s laws, that is good.
It means you have internalized DeMorgan’s laws and are using them
unconsciously.

Example 2.11 Consider the problem of forming the negation of the
following sentence.

R : The numbers x and y are both odd.

Notice that R can be interpreted as meaning (x is odd) A (y is odd), so its
negation is

~((x is odd) A (y is odd))

(~ (x is odd)) v (~ (y is odd))

(x is even) vV (y is even)
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Therefore the negation of R can be expressed in the following ways

~ R : The number x is even or the number y is even.
~R : At least one of x and y is even.

In writing proofs you will often have to negate a conditional statement
P = Q. To see how to do this, look at ~ (P = @), which literally says “P = @
is false.” You know from the truth table for = that the only way that P = @
can be false is if P is true and @ is false. Therefore ~(P = Q)= PA~@Q.

~(P>Q)=PA~Q (2.3)
(In fact, in Exercise 12 of Section 2.6, you used a truth table to prove that

these two statements are logically equivalent.)

Example 2.12 Consider negating the following statement about a par-
ticular (constant) number a.

R:If a is odd then a? is odd.
Its negation is as follows.
~R: ais odd and a? is not odd.

Now let’s move on to a slightly different kind of problem. It’s often
necessary to find the negations of quantified statements. For example,
consider ~ (Vx € N,P(x)). Reading this in words, we have the statement

It is not the case that P(x) is true for all natural numbers x.

This means that P(x) is false for at least one x. Thus in symbols it means
dx €N, ~ P(x). Therefore we have ~ (VxeN,P(x)) =3x eN,~ P(x). Similarly,
you should be able to reason out that ~(3xeN,P(x)) =VxeN,~P(x). In
general we have the following.

~(Vx€eS,P(x)) JdxeS,~P(x) 2.4)
~3@3xeS,P(x)) = VxeS,~P(x) (2.5)

Example 2.13 Consider the problem of forming the negation of the
following statement.

R : The square of every real number is nonnegative.

Symbolically, R can be expressed as Vx € R,x? >0, and thus its negation is
~(VxeR,x2=0) = xR, ~(x? =0) = Jx € R,x? < 0. In words our negation is
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~ R : There exists a real number whose square is negative.

Observe that R is true and ~ R is false. You may be able to get ~ R
immediately, without using Equation (2.4) as we did above. If so, that is
good; if not, you will be there soon.

Some statements contain multiple quantifiers, and negating them may
involve several iterations of equations (2.4) and (2.5). For example, consider
the statement

S : For every real number x there is a real number y for which y3 =x.

This statement asserts any real number x has a cube root y, so it’s true.
Symbolically S can be expressed as

VxeR,AyeR,y? =x.
Let’s work out the negation of this statement.

EIxE[R,~(EIy€[R,y3:x)
AxeR,VyeR,~(y3 =x)
JxeR,VyeR,y> #x

~(Vx€[R,Ely€[R,y3:x)

Therefore the negation is
~ S : There is a real number x for which y? # x for all real numbers y.

Again, the negation is false.

Your doing the following exercises will help ensure that you achieve
sufficient expertise in forming negations.

Exercises for Section 2.10

Negate the following sentences.
The number x is positive but the number y is not positive.
If x is prime then /x is not a rational number.

For every prime number p there is another prime number ¢ with ¢ > p.

Lol A o

For every positive number ¢, there is a positive number § such that [x—a| <6
implies |f(x) - f(a)| <E&.

5. For every positive number ¢ there is a positive number M for which |f(x)-bl<e¢
whenever x > M.

6. There exists a real number a for which a +x = x for every real number x.
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7. I don’t eat anything that has a face.

o

. If x is a rational number and x # 0, then tan(x) is not a rational number.

9. If sin(x) <0, then it is not the case that 0 <x <.
10. If f is a polynomial and its degree is greater than 2, then f’ is not constant.
11. You can fool all of the people all of the time.

12. Whenever I have to choose between two evils, I choose the one I haven’t tried
yet. (Mae West)

2.11 Logical Inference

Suppose we know that a statement of form P = @ is true. This tells us
that whenever P is true, @ will also be true. By itself, P = @ being true
does not tell us that either P or @ is true (they could both be false, or P
could be false and @ true). However if in addition we happen to know
that P is true then it must be that @ is true. This is called a logical
inference: Given two true statements we can infer that a third statement
is true. In this instance true statements P = @ and P are “added together”
to get @. This is described below with P = @ and P stacked one atop the
other with a line separating them from @. The intended meaning is that
P = @ combined with P produces Q.

P=>@Q P=>@Q Pv@
P ~Q ~P
Q ~P Q

Two other logical inferences are listed above. In each case you should
convince yourself (based on your knowledge of the relevant truth tables)
that the truth of the statements above the line forces the statement below
the line to be true.

Following are some additional useful logical inferences. The first
expresses the obvious fact that if P and @ are both true then the statement
P AQ will be true. On the other hand, P AQ being true forces P (also Q)
to be true. Finally, if P is true, then P v @ must be true, no matter what
statement @ is.

s PAQ P

PAQ p Pv@

These inferences are so intuitively obvious that they scarcely need to
be mentioned. However, they represent certain patterns of reasoning that
we will frequently apply to sentences in proofs, so we should be cognizant
of the fact that we are using them.
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2.12 An Important Note

It is important to be aware of the reasons that we study logic. There
are three very significant reasons. First, the truth tables we studied tell
us the exact meanings of the words such as “and,” “or”, “not” and so on.
For instance, whenever we use or read the “If..., then” construction in
a mathematical context, logic tells us exactly what is meant. Second,
the rules of inference provide a system in which we can produce new
information (statements) from known information. Finally, logical rules
such as DeMorgan’s laws help us correctly change certain statements into
(potentially more useful) statements with the same meaning. Thus logic
helps us understand the meanings of statements and it also produces new
meaningful statements.

Logic is the glue that holds strings of statements together and pins down
the exact meaning of certain key phrases such as the “If.., then” or “For
all” constructions. Logic is the common language that all mathematicians
use, so we must have a firm grip on it in order to write and understand
mathematics.

But despite its fundamental role, logic’s place is in the background of
what we do, not the forefront. From here on, the beautiful symbols A, v,
=, <, ~, V and 3 are rarely written. But we are aware of their meanings
constantly. When reading or writing a sentence involving mathematics we
parse it with these symbols, either mentally or on scratch paper, so as to
understand the true and unambiguous meaning.



CHAPTER 3

Counting

P erhaps you wonder why a college-level mathematics text has a chapter
on counting. Maybe you think of counting as a process of pointing to
each object in a collection and calling off “one, two, three,...” until you
determine how many objects there are. This chapter is concerned with
a more sophisticated type of counting. Our goal is still to answer the
question “How many?” but we introduce mathematical techniques that
bypass the actual process of counting individual objects.

Almost every branch of mathematics uses some form of this “sophisti-
cated counting.” Many such counting problems can be modeled with the

idea of a list, so we start there.

3.1 Counting Lists

A list is an ordered sequence of objects. A list is denoted by an opening
parenthesis, followed by the objects, separated by commas, followed by a
closing parenthesis. For example (a,b,c,d,e) is a list consisting of the first
five letters of the English alphabet, in order. The objects a,b,c,d,e are
called the entries of the list; the first entry is a, the second is b, and so
on. If the entries are rearranged we get a different list, so, for instance,

(a,b,c,d,e) #(b,a,c,d,e).

A list is somewhat like a set, but instead of being a mere collection of
objects, the entries of a list have a definite order. Note that for sets we
have

{a,b,c,d,e} =1{b,a,c,d,e},

but—as noted above—the analogous equality for lists does not hold.

Unlike sets, lists are allowed to have repeated entries. For example
(5,3,5,4,3,3) is a perfectly acceptable list, as is (S,0,S). The number of
entries in a list is called its length. Thus (5,3,5,4,3,3) has length six, and
(S,0,S) has length three.
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Occasionally we may get sloppy and write lists without parentheses
and commas; for instance we may express (S,0,S) as SOS if there is no
danger of confusion. But be alert that doing this can lead to ambiguity.
It it reasonable that (9,10,11) should be the same as 91011? If so, then
(9,10,11)=91011=(9,1,0,1,1), which makes no sense. We will thus almost
always adhere to the parenthesis/comma notation for lists.

Lists are important because many real-world phenomena can be de-
scribed and understood in terms of them. For example your phone number
(with area code) can be identified as a list of ten digits. Order is essential,
for rearranging the digits can produce a different phone number. A byte is
another important example of a list. A byte is simply a length-eight list of
0’s and 1’s. The world of information technology revolves around bytes.

To continue our examples of lists, (a,15) is a list of length two. Likewise
(0,(0,1,1)) is a list of length two whose second entry is a list of length three.
The list (N,Z,R) has length three, and each of its entries is a set. We
emphasize that for two lists to be equal, they must have exactly the same
entries in exactly the same order. Consequently if two lists are equal, then
they must have the same length. Putting this into contrapositive form,
if two lists have different lengths, then they are not equal. For example,
(0,0,0,0,0,0) #(0,0,0,0,0). For another example note that

br;niid
: mi
(g:r,O,C,e,r,y, l,L,S,t) # ( eggs )

coffee

because the list on the left has length eleven but the list on the right has
just one entry (a piece of paper with some words on it).

There is one very special list which has no entries at all. It is called
the empty list, and is denoted (). It is the only list whose length is zero.

It is often useful to be able to count up the number of possible lists
which satisfy some condition or property. For example suppose we need to
make a list of length three having the property that the first entry must
be an element of the set {a,b,c}, the second entry must be in {5,7} and
the third entry must be in {a,x}. Thus (a,5,a) and (b,5,a) are two such
lists. How many such lists are there all together? To answer this question,
imagine making the list by selecting the first element, then the second
and finally the third. This is described in Figure 3.1. The choices for the
first list entry are a,b or ¢, and the left of the diagram branches out in
three directions, one for each choice. Once this choice is made there are
two choices (5 or 7) for the second entry, and this is described graphically
by two branches from each of the three choices for the first entry. This
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pattern continues for the choice for the third entry which is either a or
x. Thus, in the diagram there are 3-2-2 =12 paths from left to right,
each corresponding to a particular choice for each entry in the list. The
corresponding lists are tallied at the far-right end of each path. So, to
answer our original question, there are 12 possible lists with the stated
properties.

first choice  second choice third choice

(a,5,a)
(a,5,x)
(a,7,a)
(a,7,x)
(b,5,a)
(b,5,x)
(b,7,a)
(b,7,x)
(¢,5,a)
(¢,5,x)
(c,7,a)
(c,7,x)
T

Resulting list

Figure 3.1. Constructing lists of length 3

We summarize the type of reasoning used above in the following im-
portant fact, which is called the multiplication principle.

Fact 3.1 (Multiplication Principle) Suppose in making a list of length
n there are a; possible choices for the first entry, as possible choices for
the second entry, a3 possible choices for the third entry, and so on. Then
the total number of different lists that can be made this way is the product

So, for instance, in the above example we had a1 =3,a2 =2 and a3 =2,
so the total number of lists was a1-a9-a3=3-2-2=12. Now let’s look at
some additional examples of how the Multiplication Principle can be used.

Example 3.1 A standard license plate consists of three letters followed
by four numbers. For example, JRB-4412 and MMX-8901 are two standard
license plates. (Vanity plates such as LV2COUNT are not included among
the standard plates.) How many different standard license plates are
possible?



60 Counting

To answer this question, note that any standard license plate such as
JRB-4412 corresponds to a length-7 list (J,R,B,4,4,1,2), so the question
can be answered by counting how many such lists are possible. We use the
Multiplication Principle. There are a1 = 26 possibilities (one for each letter
of the alphabet) for the first entry of the list. Similarly, there are as =26
possibilities for the second entry and ag = 26 possibilities for the third
entry. There are a4 = 10 possibilities for the fourth entry, and likewise
as =ag =a7 = 10. Therefore there are a total of a1-as-a3-a4-a5-a¢-a7=
26-26-26-10-10-10-10 = 17,576,000 possible standard license plates.

There are two types of List-counting problems. On one hand, there are
situations in which the same symbol or symbols may appear multiple times
in different entries of the list. For example, license plates or telephone
numbers can have repeated symbols. The sequence CCX-4144 is a perfectly
valid license plate in which the symbols C and 4 appear more than once.
On the other hand, for some lists repeated symbols do not make sense or
are not allowed. For instance, imagine drawing five cards from a standard
52-card deck and laying them in a row. Since no two cards in the deck
are identical, this list has no repeated entries. We say that repetition is
allowed in the first type of list and repetition is not allowed in the second
kind of list. (Often we call a list in which repetition is not allowed a
non-repetitive list.) The following example illustrates the difference.

Example 3.2 Consider making lists from symbols A, B, C, D, E, F, G.
(a) How many length-4 lists are possible if repetition is allowed?
(b) How many length-4 lists are possible if repetition is not allowed?
(c) How many length-4 lists are possible if repetition is not allowed and
the list must contain an E?
(d) How many length-4 lists are possible if repetition is allowed and the
list must contain an E?
Solutions:

(a) Imagine the list as containing four boxes that we fill with selections
from the letters A,B,C,D,E,F and G, as illustrated below.

GO0

7 choices
7 choices
7 choices
There are seven possibilities for the contents of each box, so the total
number of lists that can be made this way is 7-7-7-7 = 2401.
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(b) This problem is the same as the previous one except that repetition is
not allowed. We have seven choices for the first box, but once it is filled
we can no longer use the symbol that was placed in it. Hence there are
only six possibilities for the second box. Once the second box has been
filled we have used up two of our letters, and there are only five left to
choose from in filling the third box. Finally, when the third box is filled
we have only four possible letters for the last box.

(%,F, LD

6 choices
5 choices
4 choices
Thus the answer to our question is that there are 7-6-5-4 = 840 lists in

which repetition does not occur.

(c) We are asked to count the length-4 lists in which repetition is not
allowed and the symbol E must appear somewhere in the list. Thus E
occurs once and only once in each such list. Let us divide these lists into
four categories depending on whether the E occurs as the first, second,
third or fourth entry. These four types of lists are illustrated below.

Type 1 Type 2 Type 3 Type 4
(E], ?, L) (%, ELLLLCD (%, ,ELLD (%, ,L 1, [E])
6 choices 6 choices 6 choices 6 choices
5 choices 5 choices 5 choices 5 choices
4 choices 4 choices 4 choices 4 choices

Consider lists of the first type, in which the E appears in the first entry.
We have six remaining choices (A,B,C,D,F or G) for the second entry, five
choices for the third entry, and four choices for the fourth entry. Hence
there are 6-5-4 =120 lists having an E in the first entry. As indicated
in the above diagram, there are also 6-5-4 = 120 lists having an E in the
second, third or fourth entry. Thus there are 120+ 120+ 120 + 120 = 480
such lists all together.

(d) Now we must find the number of length-four lists where repetition is
allowed and the list must contain an E. Our strategy is as follows. By
Part 1 of this exercise there are 7-7-7-7 = 74 = 2401 lists where repetition
is allowed. Obviously this is not the answer to our current question,
for many of these lists contain no E. We will subtract from 2401 the
number of lists which do not contain an E. In making a list that does
not contain an E we have six choices for each list entry. (Because we
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can choose any one of the six letters A,B,C,D,F or G.) Thus there are
6-6-6-6 = 6% = 1296 lists that do not have an E. Therefore the final answer
to our question is that there are 2401 — 1296 = 1105 lists with repetition
allowed that contain at least one E.

Perhaps you wondered if Part (d) of Example 3.2 could be solved with
a set-up similar to that of Part (c). Let’s try doing it that way. We want
to count the length-4 lists (with repetition allowed) that contain at least
one E. The following diagram is adapted from Part (c), the only difference
being that there are now seven choices in each slot because we are allowed
to repeat any of the seven letters.

Type 1 Type 2 Type 3 Type 4
(E], ?, L)) (%, EL,LLLD (%, ,ELLD (%, ,L,[ED
7 choices 7 choices 7 choices 7 choices
7 choices 7 choices 7 choices 7 choices
7 choices 7 choices 7 choices 7 choices

This gives a total of 72 +73+ 73 + 72 = 1373 lists, an answer that is
substantially larger than the (correct) value of 1105 that we got in our
solution to Part (d) above. It is not hard to see what went wrong. The
list (E,E,A,B) is of type 1 and type 2, so it got counted twice. Similarly
(E,E,C,E) is of type 1, 3, and 4, so it got counted three times. In fact, you
can find many similar lists that were counted multiple times.

In solving counting problems, we must always be careful to avoid this
kind of double-counting or triple-counting, or worse.

Exercises for Section 3.1

Note. A calculator may be helpful for some of the exercises in this chapter. This
is the only chapter for which a calculator may be helpful. (As for the exercises in
the other chapters, a calculator makes them harder.)

1. Consider lists made from the letters T,H,E,O,R,Y, with repetition allowed.
(a) How many length-4 lists are there?
(b) How many length-4 lists are there that begin with 77
(c) How many length-4 lists are there that do not begin with 77

2. Airports are identified with 3-letter codes. For example, the Richmond, Virginia
airport has the code RIC, and Portland, Oregon has PDX. How many different
3-letter codes are possible?

3. How many lists of length 3 can be made from the symbols A,B,C,D,E,F if...
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10.

11.

(a) ... repetition is allowed.

(b) ... repetition is not allowed.

(e) ... repetition is not allowed and the list must contain the letter A.

(d) ... repetition is allowed and the list must contain the letter A.

Five cards are dealt off of a standard 52-card deck and lined up in a row. How
many such line-ups are there in which all five cards are of the same suit?

Five cards are dealt off of a standard 52-card deck and lined up in a row. How
many such line-ups are there in which all five cards are of the same color? (i.e.
all black or all red.)

Five cards are dealt off of a standard 52-card deck and lined up in a row. How
many such line-ups are there in which exactly one of the five cards is a queen?

This problems involves 8-digit binary strings such as 10011011 or 00001010.

(i.e. 8-digit numbers composed of 0’s and 1’s.)

(a) How many such strings are there?

(b) How many such strings end in 0?

(¢) How many such strings have the property that their second and fourth
digits are 1’s?

(d) How many such strings have the property that their second or fourth digits
are 1’s?

. This problem concerns lists made from the symbols A,B,C,D,E.

(a) How many such length-5 lists are there in which at least one letter is
repeated?

(b) How many such length-6 lists are there in which at least one letter is
repeated?

. This problem concerns 4-letter codes made from the letters A,B,C,D,...,Z of the

English Alphabet.

(a) How many such codes can be made?

(b) How many such codes are there that have no two consecutive letters the
same?

This problem concerns lists made from the letters A,B,C,D,E,F,G,H,I,J.

(a) How many length-5 lists can be made from these letters if repetition is not
allowed and the list must begin with a vowel?

(b) How many length-5 lists can be made from these letters if repetition is not
allowed and the list must begin and end with a vowel?

(¢) How many length-5 lists can be made from these letters if repetition is not
allowed and the list must contain exactly one A?

This problem concerns lists of length 6 made from the letters A,B,C,D,E,F,G,H.

How many such lists are possible if repetition is not allowed and the list

contains two consecutive vowels?
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3.2 Factorials

In working the examples from Section 3.1 you may have noticed that often
we need to count the number of non-repetitive lists of length »n that are
made from n symbols. In fact, this particular problem occurs with such
frequency that a special idea, called a factorial, is introduced to handle it.

’ n ‘ Symbols ‘ Non-repetitive lists of length »n made from the symbols ‘ n! ‘

o { 0 1

1| {4} (4) 1

2 | {A,B} (A,B),(B,A) 2

3 | {A,B,C} (A,B,0),(A,C,B),(B,C,A),(B,A,0),(C,A,B),(C,B,A) 6
(A,B,C,D),(A,B,D,C),(A,C,B,D),(A,C,D,B),(A,D,B,C),(A,D,C,B)

4 {A B.C D} (B,A,C,D), (BAD C) (BCAD) (B,C,D,A),(B,D,A,C),(B,D,C,A) 24
A (C,A,B,D),(C B),(C,B,A,D),(C,B,D,A),(C,D,A,B),(C,D,B,A)
(D,A,B,C) (D, C.B), (D,B, ,0),(D,B,C,A),D,C,AB),D,C,B,A)

>

The above table motivates this idea. The first column contains succes-
sive integer values n (beginning with 0) and the second column contains
a set {A,B,---} of n symbols. The third column contains all the possible
non-repetitive lists of length n which can be made from these symbols.
Finally, the last column tallies up how many lists there are of that type.
Notice that when n = 0 there is only one list of length 0 that can be made
from 0 symbols, namely the empty list (). Thus the value 1 is entered in
the last column of that row.

For n >0, the number that appears in the last column can be computed
using the Multiplication Principle. The number of non-repetitive lists of
length n that can be made from n symbols is n(n—1)(n—2)---3-2-1. Thus, for
instance, the number in the last column of the row for n =4 is 4-3-2-1 =24.

The number that appears in the last column of Row n is called the
factorial of n. It is denoted as n! (read “n factorial”). Here is the definition.

Definition 3.1 If n is a non-negative integer, then the factorial of n,
denoted r!, is the number of non-repetitive lists of length n that can
be made from n symbols. Thus 0! =1, and 1!=1. If n >1 then n!=
n(n-1)(n-2)---3-2-1.
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Therefore 0! =
1! =
21 =
3! =
4! =
51 =
6! =

24
=120
1=720, and so on.

@O‘lrlkool\?b—*b—l
O’l»hOOl\DH

=2
-1=6
2-1=
-3-2-1
4-3-2-

Students are often tempted to say 0! =0, but this is wrong. The correct
value is 0! =1, as the above definition and table tell us. Here is another
way to see that 0! must equal 1. Notice that 5!=5-4-3-2-1=5-(4-3-2-1)=
5-4!. Also 4!=4-3-2-1=4-(3-2-1)= 4-3!. Generalizing this reasoning we
have the following formula.

nl=n-(n-1)! 3.1)

Plugging in n =1 gives 1!=1-(1-1)!=1-0!. If we mistakenly thought 0!
were 0, this would give the incorrect result 1! =0.
We round out our discussion of factorials with an example.

Example 3.3 This problem involves making lists of length seven from
the symbols 0,1,2,3,4,5, and 6.

(a) How many such lists are there if repetition is not allowed?

(b) How many such lists are there if repetition is not allowed and the
first three entries must be odd?

(e¢) How many such lists are there in which repetition is allowed, and
the list must contain at least one repeated number?

To answer the first question, note that there are seven symbols, so the
number of lists is 7! =5040. To answer the second question, notice that
the set {0,1,2,3,4,5,6} contains three odd numbers and four even numbers.
Thus in making the list the first three entries must be filled by odd numbers
and the final four must be filled with even numbers. By the Multiplication
Principle, the number of such lists is 3-2-1-4-3-2-1= 34! =144.

To answer the third question, notice that there are 77 = 823,543 lists
in which repetition is allowed. The set of all such lists includes lists
that are non-repetitive (e.g. (0,6,1,2,4,3,5)) as well as lists that have
some repetition (e.g. (6,3,6,2,0,0,0)). We want to compute the number of
lists that have at least one repeated number. To find the answer we can
subtract the number of non-repetitive lists of length seven from the total
number of possible lists of length seven. Therefore the answer is 77 - 7! =
823,543 - 5040 = 818,503.
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We close this section with a formula that combines the ideas of the first
and second sections of the present chapter. One of the main problems of
Section 3.1 was as follows: Given n symbols, how many non-repetitive lists
of length % can be made from the n symbols? We learned how to apply the
Multiplication Principle to obtain the answer

nn-1)(n-2)---(n—k+1).

Notice that by cancellation this value can also be written as

nn-1)n-2)---(n-k+1)n-k)n-k-1)---3-2-1 n!

(n-k)n-k-1)---3-2-1  (n—k)

We summarize this as follows.

Fact 3.2 The number of non-repetitive lists of length & whose entries

. . . !
are chosen from a set of n possible entries is ;2.

For example, consider finding the number of non-repetitive lists of
length five that can be made from the symbols 1,2,3,4,5,6,7,8. We will do
this two ways. By the Multiplication Principle, the answer is 8-7-6-5-4 =
6720. Using the formula from Fact 3.2, the answer is (sg_!5)! = % 40’320 =
6720.

The new formula isn’t really necessary, but it is a nice repackaging of

an old idea and will prove convenient in the next section.

Exercises for Section 3.2

1. What is the smallest n for which n! has more than 10 digits?
2. For which values of n does n! have n or fewer digits?

3. How many 5-digit positive integers are there in which there are no repeated

digits and all digits are odd?

4. Using only pencil and paper, find the value of 10%'.

5. Using only pencil and paper, find the value of %gi.

6. There are two 0’s at the end of 10! = 3,628,800. Using only pencil and paper,
determine how many 0’s are at the end of the number 100!.

7. How many 9-digit numbers can be made from the digits 1,2,3,4,5,6,7,8,9 if
repetition is not allowed and all the odd digits occur first (on the left) followed
by all the even digits? (i.e. as in 1375980264, but not 0123456789.)

8. Compute how many seven-digit numbers can be made from the 1,2,3,4,5,6,7

if there is no repetition and the odd integers must appear in an unbroken
sequence (as in 3571264 or 2413576 or 2467531, etc., but not 7234615.)
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9. There is a very interesting function I':[0,00) — R called the Gamma Function.

It is defined as I'(x) = [;°t*le~!d¢t. It has the remarkable property that if x €N,
then I'(x) = (x — 1)!. Check that this is true for x=1,2,3,4.
Notice that this function provides a way of extending factorials to numbers other
than integers. Since I'(n) = (n—1)! for all n € N, we have the formula n!=I'(n+1).
But I' can be evaluated at any number in [0,00), not just at integers, so we
have a formula for n! for any n € [0,00). Extra credit: Compute 7!.

10. There is another significant function called Stirling’s Formula that provides
an approximation to factorials. It states that n!~v27n (%)n It is an approxi-

. 13 n!
mation to n! in the sense that TEmn (@)

Stirling’s Formula to find approximations to 5!, 10!, 20! and 50!.

approaches 1 as n approaches oco. Use

3.3 Counting Subsets

The previous two sections were concerned with counting the number of
lists that can be made by selecting % entries from a set of n possible entries.
We turn now to a related question: How many subsets can be made by
selecting k£ elements from a set with n elements?

To highlight the differences between these two problems, look at the set
A ={a,b,c,d,e}. First, think of the non-repetitive lists that can be made
from selecting two entries from A. By Fact 3.2 (on the previous page),

there are % = g—; = 1%0 =20 such lists. They are as follows.

(a,b), (a,0), (a,d), (a,e), (b,c), (b,d), (b,e), (c,d), (c,e) (d,e)
(b,a), (c,a), (d,a), (e,a), (c,b), (d,b), (e,b), (d,c), (e,c) (e,d)

Next consider the subsets of A that can made from selecting two ele-
ments from A. There are only 10 such subsets, as follows.

{a,b}, {a,c}, {a,d}, {a,e}, {b,c}, {b,d}, {b,e}, {c,d}, {c,e}, {d,e}.

The reason that there are more lists than subsets is that changing the
order of the entries of a list produces a different list, but changing the
order of the elements of a set does not change the set. Using elements
a,be A, we can make two lists (a,b) and (b,a), but only one subset {a,b}.

In this section we are concerned not with counting lists, but with
counting subsets. As was noted above, the basic question is this: How
many subsets can be made by choosing 2 elements from an n-element
set? We begin with some notation that gives a name to the answer to this
question.
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Definition 3.2 If n and % are integers, then (}) denotes the number
of subsets that can be made by choosing k. elements from a set with n
elements. The symbol (}) is read “n choose £”. (Some textbooks write
C(n,k) instead of (}).)

To illustrate this definition, the following table computes the values of
(,‘:) for various values of &£ by actually listing all the subsets of the 4-element
set A ={a,b,c,d} that have cardinality k. The values of &k appear in the
far-left column. To the right of each % are all of the subsets (if any) of A of
size k. For example, when k& =1, set A has four subsets of size k, namely
{a}, {6}, {c} and {d}. Therefore (}) =4. Similarly, when % =2 there are six
subsets of size & so (3) =6.

k | k-element subsets of {a,b,c,d} ()

-1 (*)=0
0|9 ()=1
1 | {a},{b},{c}.{d} (1) =4
2 | {a.b}.{a,c} {a,d},{b,c}.{b.d} {e.d} | (5)=6
3 | {a,b,c},{a,b,d},{a,c,d},{b,c,d} (3)=4
4 | {a,b,e,d} (H=1
5 (5 =0
6 (5) =0

When % =0, there is only one subset of A that has cardinality %, namely
the empty set . Therefore (j) = 1.

Notice that if % is negative or greater than |A|, then A has no subsets
of cardinality %, so (2) =0 in these cases. In general (;) =0 whenever & <0
or k>n. In particular this means (;) =0 if » is negative.

Although it was not hard to work out the values of (;) by writing out
subsets in the above table, this method of actually listing sets would not
be practical for computing (;;) when n and & are large. We need a formula.
To find one, we will now carefully work out the value of (g) in such a way
that a pattern will emerge that points the way to a formula for any (}).
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To begin, note that (3) is the number of 3-element subsets of {a,b,c,d, e}.
These are listed in the following table. We see that in fact (3) = 10.

5)
{a,b,c}{a,b,d}{a,b,e} {a,c,d} {a,c.e} {a,d,e} {b,c,d} {b,c.e} {b,d,e} {c,d,e}

The formula will emerge when we expand this table as follows. Taking
any one of the ten 3-element sets above, we can make 3! different non-
repetitive lists from its elements. For example, consider the first set {a, b, c}.
The first column of the following table tallies the 3! =6 different lists that
can be the letters {a,b,c}. The second column tallies the lists that can be
made from {a,b,d}, and so on.

(5)
abc abd abe acd ace ade bed bee bde cde
acb adb aeb adc aec aed bdc bec bed ced
bac bad bae cad cae dae cbd cbe dbe dce
bca bda bea cda cea dea cdb ceb deb dec
cba dba eba dca eca eda dcb ecb edb edc
cab dab eab dac eac ead dbc ebc ebd ecd

The final table has (}) columns and 3! rows, so it has a total of 3!(3) lists.
But notice also that the table consists of every non-repetitive length-3 list
that can be made from the symbols {a,b,c,d,e}. We know from Fact 3.2
that there are (5 3), such lists. Thus the total number of lists in the table

is 3.( )= Dividing both sides of this equation by 3!, we get

5\ 5!
3] 315-3)"

Working this out, you will find that it does give the correct value of 10.

(5 3)'

But there was nothing special about the values 3 and 5. We could do
the above analysis for any () instead of (g) The details would be a little
different, but the big picture would be the same. We would get

n\| n!
El  Rkl(n-k)

We summarize this as follows:
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!
Fact 3.3 Ifn,keZ and 0<k <n, then (Z) = m Otherwise (Z) =0.

Let’s now use our new knowledge to work some exercises.

Example 3.4 How many 4-element subsets does {1,2,3,4,5,6,7,8,9} have?

o9y _ 9 _ 9 _ 98765 _ 9876 _ 9876 _
The answer is (4) = o-a1 = AB = 4B = 4 = a1 = 126.

Example 3.5 A single 5-card hand is dealt off of a standard 52-card deck.
How many different 5-card hands are possible?

To answer this, think of the deck as being a set D of 52 cards. Then a
5-card hand is just a 5-element subset of D. For example here is one of
many different 5-card hands that might be dealt from the deck.

7 2 3 A 5
S|l |O7 & |C

The total number of possible hands equals the number of 5-element
subsets of D, that is

52 52!  52.51.50-49-48-47! 52.51-50-49-48
_ - =2,598,960.

5| Bl.471 51.47! 51

Thus the answer to our question is that there are 2,598,960 different
five-card hands that can be dealt from a deck of 52 cards.

Example 3.6 This problem concerns 5-cards hands that can be dealt off
of a 52-card deck. How many such hands are there in which two of the
cards are clubs and three are hearts?

Solution: Think of such a hand as being described by a list of length

two of the form
{ININISBEN

where the first entry is a 2-element subset of the set of 13 club cards, and
the second entry is a 3-element subset of the set of 13 heart cards. There
are () choices for the first entry and (%) choices for the second entry, so
by the Multiplication Principle there are (i)(%?) = 42 12 = 66,924 such
lists. Answer: There are 66,924 possible 5-card hands with two clubs

and three hearts.

Example 3.7 Imagine a lottery that works as follows. A bucket contains
36 balls numbered 1,2,3,4,...,36. Six of these balls will be drawn randomly.

For $1 you buy a ticket that has six blanks: . You fill in the
blanks with six different numbers between 1 and 36. You win $1,000,000
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if you chose the same numbers that are drawn, regardless of order. What
are your chances of winning?

Solution: In filling out the ticket you are choosing six numbers from
a set of 36 numbers. Thus there are (35) = ().!(??T% =1,947,792 different
combinations of numbers you might write. Only one of these will be a

winner. Your chances of winning are one in 1,947,792.

Exercises for Section 3.3

1. Suppose a set A has 37 elements. How many subsets of A have 10 elements?
How many subsets have 30 elements? How many have 0 elements?

2. Suppose A is a set for which |A| =100. How many subsets of A have 5 elements?
How many subsets have 10 elements? How many have 99 elements?

3. A set X has exactly 56 subsets with 3 elements. What is the cardinality of X?
4. Suppose a set B has the property that |[{X : X € 2(B),|X| =6}| =28. Find |B|.
5. How many 16-digit binary strings contain exactly seven 1’s? (Examples of such
strings include 0111000011110000 and 0011001100110010, etc.)
6. |{Xe€2(0,1,2,3,4,5,6,7,8,9}): |X| =4}| =
7. 1{X € 2{0,1,2,3,4,5,6,7,8,9}): |X| <4}| =
8. This problem concerns lists made from the symbols A,B,C,D,E,F,G,H,I.
(a) How many length-5 lists can be made if repetition is not allowed and the
list is in alphabetical order?
(b) How many length-5 lists can be made if repetition is not allowed and the
list is not in alphabetical order?

9. This problem concerns lists of length six made from the letters A,B,C,D,E,F,
without repetition. How many such lists have the property that the D occurs
before the A?

10. A department consists of five men and seven women. From this department
you select a committee with three men and two women. In how many ways
can you do this?

11. How many 10-digit integers contain no 0’s and exactly three 6’s?

12. Twenty one people are to be divided into two teams, the Red Team and the
Blue Team. There will be 10 people on Red Team and 11 people on Blue Team.
In how many ways can this be done?

13. Suppose n and % are integers for which 0 <% <n. Use the formula (}) = #ik),
to show that (}) = (,”,)-

14. Suppose n,keZ, and 0 <k <n. Use Definition 3.2 alone (without using Fact 3.2)

to show that (}) =(,",).
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3.4 Pascal’s Triangle and the Binomial Theorem

There are some beautiful and significant patterns among the numbers (7).
This section investigates a pattern based on one equation in particular. It

happens that
n+1 n n

for any integers n and & with 0 <k <n.

To see why this is true, recall that (",:1) equals the number of k-element
subsets of a set with n+1 elements. Now, the set A ={0,1,2,3,...,n} has
n+1 elements, so (”,:1) equals the number of k-element subsets of A. Such
subsets can be divided into two types: those that contain 0 and those that
do not contain 0. To make a k-element subset that contains 0 we can start
with {0} and then append to this set an additional £ — 1 numbers selected
from {1,2,3,...,n}. There are (,",) ways to make this selection, so there
are (,",) k-element subsets of A that contain 0. Concerning the k-element
subsets of A that do not contain 0, there are (}) of these sets, for we can
form them by selecting % elements from the n-element set {1,2,3,...,n}. In
light of all this, Equation (3.2) just expresses the obvious fact that the
number of k-element subsets of A equals the number of 2-element subsets

that contain 0 plus the number of k-element subsets that do not contain 0.

0 1
9 (0) 5 (1) 9 1 1
L0 G, G 1 2 1
4(0)4(1)4(2)4(3)4 1 3 3 1
5(0)5(1)5(25(3)5(4)5 1 4 6 4 1
6 (o) 6 (7) . (2) . (5) . (1) . (3) . 1 5 10 10 5 1
. (o) . () . (2) . (3) . () , (z) . (6) . 1 6 15 20 15 6 1
_(0) O 6 6 @ 6 @ (7) 17 21 35 3 21 7 1

Figure 3.2. Pascal’s Triangle

Now that we have seen why Equation (3.2) is true, we are going to

arrange the numbers (}) in a triangular pattern that highlights various

relationships among them. The left-hand side of Figure 3.2 shows numbers
(7) arranged in a pyramid with (8) at the apex, just above a row containing

(;) with £ =0 and & = 1. Below this is a row listing the values of () for
k=0,1,2. In general, each row listing the numbers (}) is just above a row

listing the numbers (*;1).
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Any number (”Zl) in this pyramid falls immediately below and between
the positions of the two numbers (,”;) and (}) in the previous row. But
Equation 3.2 says (*;') = (,*,)+(}), and therefore any number (other than 1)
in the pyramid is the sum of the two numbers immediately above it.

This pattern is especially evident on the right of Figure 3.2, where the
values of each (;) have been worked out. Notice how 21 is the sum of the
two numbers 6 and 15 above it. Similarly, 5 is the sum of the numbers 1
and 4 above it and so on.

The arrangement of numbers on the right of Figure 3.2 is called
Pascal’s Triangle. (It is named after Blaise Pascal, 1623-1662, a french
mathematician and philosopher who discovered many of its properties.)
Although we have written only the first eight rows (beginning with Row 0
at the apex) of Pascal’s triangle, it obviously could be extended downward
indefinitely. We could add an additional row at the bottom by placing a
1 at each end and obtaining each remaining number by adding the two
numbers above its position. Doing this would give the following row.

1 8 28 56 70 56 28 8 1

This row consists of the numbers (2) for 0 <% <8, and we have computed
them without using the formula (}) = 2. Any number () can be
computed in this fashion.

We call the very top row (containing only 1) Row 0. Row 1 is the next
row down, followed by Row 2, then Row 3, etc. With this labeling, Row n

consists of the numbers (}) for 0<k <n.

1 1
1 1 1x + 1y
1 9 1 12 + 2xy + 1y2
1 3 3 1 13 + 322y + 3xy? + 1y°
1 4 6 4 1 1t + 42®y? 622y + 4xyd + 1yt

1 5 10 10 5 1 1x° + 5x4y +10x?’y2 +10x2y3+ 5xyt + 1y

Figure 3.3. The n'* row of Pascal’s Triangle lists the coefficients of (x+y)*

Notice that the numbers in Row n of Pascal’s triangle appear to be the
same as the coefficients of the expansion of (x + y)”. For example, for n =2
we have (x+y)? = 1x2 + 2xy + 1y? and Row 2 of Pascal’s Triangle lists the
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coefficients 1 2 1. Similarly (x+y)3 = 1x® + 3x?y + 3xy%2 + 1y%, and Row 3 lists
the coefficients 1 3 3 1. Pascal’s Triangle is shown on the left of Figure
3.3 and immediately to the right of each Row n is listed the expansion of
(x+y)". In every case (at least as far as you care to check) the numbers in
Row n match up with the coefficients of (x + y)”.

In fact this turns out to be true for every n. This result is known as
the Binomial Theorem, and it is worth mentioning here. It tells how to
raise a binomial x +y to a non-negative integer power n.

Theorem 3.1 (Binomial Theorem) If » is a non-negative integer, then
(o )" = ()" + (" Ly + ()" 2y + (5" Py oo (1 Jwy™ T+ ()"

For now we will be content to accept the Binomial Theorem without
proof. (You will be asked to prove it in an exercise in Chapter 10.) But
until then you may find it useful from time to time. For instance you
can apply it if you ever need to expand an expression such as (x+y)’. To
do this, look at Row 7 of Pascal’s Triangle in Figure 3.2 and apply the
Binomial Theorem to get

(9c+y)7 =x' +7x6y+21x5y2 +35x4y3 +35x3y4 +21x2y5 + 7xy6 +y7.

Exercises for Section 3.4

Write out Row 11 of Pascal’s triangle.
Use the Binomial Theorem to find the coefficient of x8y® in (x+ y)13.
Use the Binomial Theorem to find the coefficient of x® in (x +2)'3.
Use the Binomial Theorem to find the coefficient of x¢y2 in (3x —2y)°.
. Use the Binomial Theorem to show Y7_(;) =2".

. Use Definition 3.2 and Fact 1.3 to show ¥.}_,(;) =2".

. Use the Binomial Theorem to show Y7_, 8*(}) =4".

. Use Fact 3.3 to derive Equation 3.2.

. Use the Binomial Theorem to show (5) - (7) + (3) —

TS - = O CRH

() ()= 1) =
. Show that the formula &(}) = n(}"}) is true for all integers n,k with 0<k <n.
. Use the Binomial Theorem to show 9" =¥7_ (-1)*(})10"7%.

. Show that (3)(%) = (2)( 7).

k—m

. Show that (&)= 3)+ () +(3)+ () +---+ ("5

ot
- @

-
W N
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3.5 Inclusion-Exclusion

Many counting problems involve computing the cardinality of a union AuB
of two finite sets A and B. We examine this kind of problem now.

First we develop a formula for |[AuB|. It is tempting to say that |A uB]|
must equal |A|+|B|, but that is not quite right. If we count the elements
of A and then count the elements of B and add the two figures together,
we get |A|+|B|. But if A and B have some elements in common then we
have counted each element in A nB twice.

Therefore |A|+ |B| exceeds |[AUB| by |AnB|, and consequently |[AUB| =
|A|+|B|—|AnB|. This can be a useful equation.

|[AuB|=|A|+|B|-|ANB] (8.3)

Notice that the sets A, B and AnB are all generally smaller than AuB, so
Equation (3.3) has the potential of reducing the problem of determining
|A UB| to three simpler counting problems. It is sometimes called an
inclusion-exclusion formula because elements in A N B are included (twice)
in |A|+|B|, then excluded when |ANnB| is subtracted. Notice that if AnB =g,
then we do in fact get |A UB| =|A|+|B|; conversely if |[AuB|=|A|+|B]|, then
it must be that AnB =¢.

Example 3.8 A three-card hand is dealt off of a standard 52-card deck.
How many different such hands are there for which all three cards are red
or all three cards are face cards?

Solution: Let A be the set of 3-card hands where all three cards are
red (i.e. either Q or <¢.) Let B be the set of 3-card hands in which all three
cards are face cards (i.e. J,K or @ of any suit). These sets are illustrated

below.
{{”}’{”}’{”}’m} (Red cards)
VIR V) V) 5 :
B =

AU MISHSE - s o
aflo s o o o
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We seek the number of 3-card hands that are all red or all face cards,
and this number is |A uB|. By Formula (3.3), |]AuB|=|A|+|B|-|AnB].
Let’s examine |A|,|B| and |A nB| separately. Any hand in A is formed
by selecting three cards from the 26 red cards in the deck, so |[A| = (236).
Similarly, any hand in B is formed by selecting three cards from the 12
face cards in the deck, so |B| = (132) Now think about A nB. It contains all
the 3-card hands made up of cards that are red face cards.

K|| K|| J K|| J Q| J (Red face
A m B = > o b > > 9 9 > ” P
QIO [|@ (VI RV] S [1¢ cards)

The deck has only six red face cards, so |AnB|= (§).

Now we can answer our question. The number of 3-card hands that
are all red or all face cards is |JAUB|=|A|+|B|-|ANnB| = (236)+ (132)— (g) =
2600+ 220 — 20 = 2800.

There is an analogue to Equation (3.3) that involves three sets. Consider
three sets A, B and C, as represented in the following Venn Diagram.

[N
797

Using the same kind of reasoning that resulted in Equation (3.3), you can
convince yourself that

[AUBUC|=|A|+|B|+IC|-|AnB|—-|ANnC|-|BnC|+|AnBnC|. 3.4)

There’s probably not much harm in ignoring this one for now, but if you
find this kind of thing intriguing you should definitely take a course in
combinatorics. (Ask your instructor!)

As we’ve noted, Equation (3.3) becomes |[AuUB|=|A|+|B| if it happens
that AnB = @. Also, in Equation (3.4), note that if AnB=¢, AnC =@, and
BnC =@ we get the simple formula [AuBUC|=|A|+|B|+|C|. In general
we have the following formula for n sets, none of which overlap. It is
sometimes called the Addition Principle.

Fact 3.4 (The Addition Principle) If A{,A,,...,A, are sets for which
A;nAj;=¢ whenever i #j, then [AjUAgU---UA,|= |[A1]+|Ag| +---+|A,l.
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Example 3.9 How many 7-digit binary strings (0010100, 1101011, etc.)
have an odd number of 1’s?

Solution: Let A be the set of all 7-digit binary strings with an odd
number of 1’s, so the answer to the question will be |[A|. To compute |A],
we break A up into smaller parts. Notice any number in A will have either
one, three, five or seven 1’s. Let A; be the set of 7-digit binary strings
with only one 1. Let A3z be the set of 7-digit binary strings with three 1’s.
Let A5 be the set of 7-digit binary strings with five 1’s, and let A; be the
set of 7-digit binary strings with seven 1’s. Therefore A=A;UA3UA5UA7.
Notice that any two of the sets A; have empty intersection, so Fact 3.4
gives |A|=|A1]+|As| +|A5| +]A7].

Now the problem is to find the values of the individual terms of this
sum. For instance take Ag, the set of 7-digit binary strings with three 1’s.
We can form such a number by selecting three out of seven positions for
the 1’s and putting 0’s in the other spaces. Therefore |A3| = (3). Similarly
A1l = (1), 1451 = ({), and |A7| = (7). Finally the answer to our question is
Al = A1l +1As] + A5l +1A71 = (D+ )+ (D)+ (7)) = 7+35+21+1=64. There

37T 5
are 64 seven-digit binary strings with an odd number of 1’s.

You may realize that you have already been using the Addition Principle
intuitively, without thinking of it as a free-standing result. For example
we used it in Example 3.2(c) when we divided lists into four types and
computed the number of lists of each type.

Exercises for Section 3.5

1. At a certain university 523 of the seniors are history majors or math majors
(or both). There are 100 senior math majors, and 33 seniors are majoring in
both history and math. How many seniors are majoring in history?

2. How many 4-digit positive integers are there for which there are no repeated
digits, or all digits are odd?
3. How many 4-digit positive integers are there that are even or contain no 0’s?
4. This problem involves lists made from the letters T,H,E,O,R,Y, with repetition
allowed.
(a) How many 4-letter lists are there that don’t begin with T, or don’t end in
Y?
(b) How many 4-letter lists are there in which the sequence of letters T,H,E
appears consecutively?

(c) How many 5-letter lists are there in which the sequence of letters T,H,E
appears consecutively?
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10.

. How many 7-digit binary strings begin in 1 or end in 1 or have exactly four 1’s?
. Is the following statement true or false? Explain. If AynAsnAsz =@, then

[A{UAgUA3| = |A1|+[Ag] +]As3].

This problem concerns 4-card hands dealt off of a standard 52-card deck. How
many 4-card hands are there for which all four cards are of the same suit or
all four cards are red?

. This problem concerns 4-card hands dealt off of a standard 52-card deck. How

many 4-card hands are there for which all four cards are of different suits or
all four cards are red?

. A 4-letter list is made from the letters L,I,S,T,E,D according to the following

rule: Repetition is allowed, and the first two letters on the list are vowels or
the list ends in D. How many such lists are possible?

A 5-card poker hand is called a flush if all cards are the same suit. How many
different flushes are there?
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CHAPTER 4

Direct Proof

t is time to prove some theorems. There are various proof techniques,

and this chapter describes the most straightforward approach, a tech-

nique called direct proof. As we begin, it is important to keep in mind the
meanings of three key terms: Theorem, proof and definition.

A theorem is a mathematical statement that is true, and can be (and
has been) verified as true. A proof of a theorem is a written verification
that shows that the theorem is definitely and unequivocally true. A proof
should be understandable and convincing to anyone who has the requisite
background and knowledge. This knowledge includes an understanding of
the meanings of the mathematical words, phrases and symbols that occur
in the theorem and its proof. It is crucial that both the writer of the proof
and the readers of the proof agree on the exact meanings of all the words,
for otherwise there is an intolerable level of ambiguity. A definition is an
exact, unambiguous explanation of the meaning of a mathematical word or
phrase. We will elaborate on the terms theorem and definition in the next
two sections, and then finally we will be ready to begin writing proofs.

4.1 Theorems

A theorem is a statement that is true and has been proved to be true.
You have encountered many theorems in your mathematical education.
Here are some theorems taken from an undergraduate calculus text. They
will be familiar to you, though you may not have read all the proofs.

Theorem: Let f be continuous on an open interval I and let ceI. If
f(c) is the maximum or minimum value of f on I and if f'(c) exists,
then f/(c) =0.

Theorem: If }7° , a) converges, then lim;_.a; =0.

Theorem: Suppose f is continuous on the interval [a,b]. Then f is
integrable on [a,b].
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Theorem: Every absolutely convergent series converges.

Observe that each of these theorems either has the conditional form “If
P, then @.” or can be put into that form. The first theorem has an initial
sentence “Let f be continuous on an open interval I, and let c € I.” which
sets up some notation, but a conditional statement follows it. The third
theorem has form “Suppose P. Then @.” but this means the same thing
as “If P, then @.” The last theorem can be re-expressed as “If a series is
absolutely convergent, then it is convergent.”

A theorem of form “If P, then @.” can be regarded as a device that
produces new information from P. Whenever we are dealing with a
situation where P is true, then the theorem guarantees that, in addition,
Q is true. Since this kind of “expansion of information” is useful, theorems
of form “If P, then @.” are very common.

But not every theorem is a conditional statement. Some have the form
of the biconditional P < @, but, as we know, that can be expressed as two
conditional statements. Other theorems simply state facts about specific
things. For example, here is another theorem from your study of calculus.

Theorem: The series 1+ % + % + % + % +--- diverges.
It would be difficult (or at least awkward) to restate this as a conditional
statement. Still, it is true that most theorems are conditional statements,
so much of this book will concentrate on that type of theorem.

It is important to be aware that there are a number of words that mean
essentially the same thing as the word “theorem,” but which are used in
slightly different ways. In general the word “theorem” is reserved for a
statement that is considered important or significant (the Pythagorean
Theorem, for example). A statement that is true but not as significant
is sometimes called a proposition. A lemma is a theorem whose main
purpose is to help prove another theorem. A corollary is a result that is
an immediate consequence of a theorem or proposition. It is not important
that you remember all these words now, for their meanings will become
clear with usage.

Our main task is to learn how to prove theorems. As the above examples
suggest, proving theorems requires a clear understanding of the meaning
of the conditional statement, and that is the primary reason we studied it
so extensively in Chapter 2. In addition, it is also crucial to understand
the role of definitions.



Definitions 83

4.2 Definitions

A proof of a theorem should be absolutely convincing. Ambiguity must
be avoided. Thus everyone must agree on the exact meaning of each
mathematical term. In Chapter 1 we defined the meanings of the sets N,
Z, R, Q and @, as well as the meanings of the symbols € and <, and we
shall make frequent use of these things. Here is another definition that
we use often.

Definition 4.1 An integer n is even if n = 2a for some integer a € Z.

Thus, for example, 10 is even because 10 =2-5. Also, according to the
definition 7 is not even because there is no integer a for which 7 = 2a.
While there would be nothing wrong with defining an integer to be odd if
it’s not even, the following definition is more concrete.

Definition 4.2 An integer n is odd if n =2a + 1 for some integer a € Z.

Thus 7 is odd because 7=2-3+1. We will use these definitions whenever
the concept of even or odd numbers arises. If in a proof a certain number
turns out to be even, the definition allows us to write it as 2a for an
appropriate integer a. If some quantity has form 2b+1 where b is an
integer, then the definition tells us the quantity is odd.

Definition 4.3 Two integers have the same parity if they are both even
or they are both odd. Otherwise they have opposite parity.

Thus 5 and —17 have the same parity, as do 8 and 0; but 3 and 4 have
opposite parity.

Two points about definitions are in order. First, in this book the word
or term being defined appears in boldface type. Second, it is common to
express definitions as conditional statements even though the biconditional
would more appropriately convey the meaning. Consider the definition
of an even integer. You understand full well that if »n is even then n =2a
(for a € 7), and if n = 2a, then n is even. Thus, technically the definition
should read “An integer n is even if and only if n = 2a for some a€72.”
However, it is an almost-universal convention that definitions are phrased
in the conditional form, even though they are interpreted as being in
the biconditional form. There is really no good reason for this, other
than economy of words. It has just become the standard way of writing
definitions, and we have to get used to it.

Here is another definition that we will use often.
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Definition 4.4 Suppose a and b are integers. We say that a divides b,
written a|b, if b = ac for some c e Z. In this case we also say that a is a
divisor of b, and that b is a multiple of a.

For example, 5 divides 15 because 15 =5-3. We write this as 5|15.
Similarly 8|32 since 32=8-4, and —6|6 since 6 = —6--1. However, 6 does
not divide 9 because there is no integer for which 9 =6-c. We express this
as 6 /9, which we read as “6 does not divide 9.”

Be careful of your interpretation of the symbols. There is a big difference
between the expressions a|b and a/b. The expression al|b is a statement,
while a/b is a fraction. For example, 8/16 is true and 8|20 is false. By
contrast, 8/16 = 0.5 and 8/20 = 0.4 are numbers, not statements. Be careful
to not write one when you mean the other.

Every integer has a set of integers which divide it. For example the set
of divisors of 6 is {a€Z:a|6} = {-6,-3,-2,-1,1,2,3,6}. The set of divisors
of 5is {-5,-1,1,5}. The set of divisors of 0 is Z. This brings us to the
following definition, with which you are already familiar.

Definition 4.5 A natural number p is prime if it has exactly two positive
divisors, 1 and p.

Of course not all terms can be defined. If we defined every word that
appeared in a definition, we would need separate definitions for the words
that appeared in those definitions, and so on until the chain of defined
terms became circular. Thus we accept some ideas as being so intuitively
clear that they do not require definitions. For example, we will not find
it necessary to define exactly what an integer is, nor will we define what
addition, multiplication, subtraction and division are. We will freely use
such things as the distributive and commutative properties of addition
and multiplication, along with all the usual properties of arithmetic and
algebra. In addition, we accept the following statements as being so
obviously true that they do not need to be proved.

Fact 4.1 Suppose a and b are integers. Then:

e at+tbeZ
e a—-beZ
e abeZ

These three statements can be combined. For example, we see that if
a,b and ¢ are integers, then a?b —ca + b is also an integer.

Another fact that we will accept without proof (at least for now) is
that every natural number greater than 1 has a unique factorization into
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primes. For example, the number 1176 can be factored into primes as
1176 =2-2-2-3-7-7 = 22.3.72. By unique we mean that any factorization
of 1176 into primes will have exactly the same factors (i.e. three 2’s, one 3,
and two 7’s.) Thus, for example, there is no valid factorization of 1176 that
has a factor of 5. You may be so used to factoring numbers into primes that
you think it is obvious that there cannot be different prime factorizations
of the same number, but in fact this is a fundamental result whose proof
is not transparent. Nonetheless, we will be content to assume that every
natural number greater than 1 has a unique factorization into primes.
(Though you may wish to revisit the issue of a proof once you become
fluent at proving theorems.)

We will introduce other accepted facts, as well as other definitions, as
they are needed.

4.3 Direct Proof

This section explains a simple technique for proving theorems or propo-
sitions which have the form of conditional statements. The technique is
called direct proof. To simplify the discussion, our first examples will
involve proving statements that are almost obviously true. Thus we will
call the statements propositions rather than theorems. (Remember, a
proposition is a statement that, although true, is not as significant as a
theorem.)

To understand how the technique of direct proof works, suppose we
have some proposition of the following form.

Proposition If P, then Q.

This proposition is a conditional statement of form P = @. Our goal
is to show that this conditional statement is true. To see how to proceed,
look at the truth table.

Plefr=a]
T|T] T
T|F|| F
FlT| T
FIF| T

The table shows that if P is false, the statement P = @ is automatically
true. This means that if we are concerned with showing P = @ is true, we
don’t have to worry about the situations where P is false (as in the last
two lines of the table) because the statement P = @ will be automatically
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true in those cases. But we must be very careful about the situations
where P is true (as in the first two lines of the table). We must to show
that the condition of P being true forces @ to be true also, for that means
the second line of the table cannot happen.

This gives a fundamental outline for proving statements of the form
P = @. Begin by assuming that P is true (remember, we don’t need to worry
about P being false) and show this forces @ to be true. We summarize this
as follows.

Outline for Direct Proof.
Proposition If P, then Q.

Proof. Suppose P.

Therefore Q. [ |

So the setup for direct proof is remarkably simple. The first line of the
proof is the sentence “Suppose P.” The last line is the sentence “Therefore
®.” Between the first and last line we use logic, definitions and standard
math facts to transform the statement P to the statement @. It is common
to use the word “Proof” to indicate the beginning of a proof, and the symbol
m to indicate the end.

As our first example, let’s prove that if x is odd then x? is also odd.
(Granted, this is not a terribly impressive result, but we will move on to
more significant things in due time.) The first step in the proof is to fill
in the outline for direct proof. This is a lot like painting a picture, where
the basic structure is sketched in first. We leave some space between the
first and last line of the proof. The following series of frames indicates the
steps you might take to fill in this space with a logical chain of reasoning.

Proposition If x is odd, then x2 is odd.

Proof. Suppose x is odd.

Therefore x? is odd. [ ]

Now that we have written the first and last lines, we need to fill in the
space with a chain of reasoning that shows that x being odd forces x? to be
odd. In doing this it’s always advisable to use any definitions that apply.
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The first line says x is odd, and by Definition 4.2 it must be that x =2a + 1
for some a € Z, so we write this in as our second line.

Proposition If x is odd, then x? is odd.

Proof. Suppose x is odd.
Then x =2a+1 for some a € Z, by definition of an odd number.

Therefore x? is odd. ]

Now jump down to the last line, which says x? is odd. Think about what
the line immediately above it would have to be in order for us to conclude
that x2 is odd. By the definition of an odd number, we would have to have
x? =2a +1 for some a € Z. However, the symbol a now appears earlier in
the proof in a different context, so we should use a different symbol, say b.

Proposition If x is odd, then x? is odd.

Proof. Suppose x is odd.
Then x =2a + 1 for some a € Z, by definition of an odd number.

Thus x2 =2b+1 for an integer b.
Therefore x? is odd, by definition of an odd number. [ ]

We are almost there. We can bridge the gap as follows.

Proposition If x is odd, then x? is odd.

Proof. Suppose x is odd.

Then x =2a + 1 for some a € Z, by definition of an odd number.
Thus x% = (2a +1)? = 4a? + 4a + 1= 2(2a% +2a) + 1.

So x2=2b+1 where b is the integer b =2a”+2a.

Thus x? = 2b + 1 for an integer b.

Therefore x? is odd, by definition of an odd number. [ |

Finally, we may wish to clean up our work and write the proof in paragraph
form. Here is our final version.



88 Direct Proof

Proposition If x is odd, then x? is odd.

Proof. Suppose x is odd. Then x =2a+1 for some a € Z, by definition
of an odd number. Thus x? =(2a +1)2 =4a? + 4a +1=2(2a% +2a) + 1,
so x2 =2b+1 where b =2a2+2a€Z. Thus x? =2b+1 for an integer
b. Therefore x? is odd, by definition of an odd number. [ ]

It’s generally a good idea to write the first and last line of your proof
first, and then fill in the gap, sometimes jumping alternately between
top and bottom until you meet in the middle, as we did above. This way
you are constantly reminded that you are aiming for the statement at
the bottom. Sometimes you will leave too much space, sometimes not
enough. Sometimes you will get stuck before figuring out what to do. This
is normal. Mathematicians do scratch work just as artists do sketches for
their paintings.

Here is another example. Consider writing a proof of the following
proposition.

Proposition Suppose a,b and c are integers. If a|b and b|c, then a|c.

Let’s apply the basic outline for direct proof. To clarify the procedure
we will write the proof in stages again.

Proposition Suppose a,b and c are integers. If a|b and b|c, then a|c.

Proof. Suppose a|b and b|c.

Therefore a|c. |

Our first step is to apply Definition 4.4 to the first line. The definition
says a|b means b =ac for some integer ¢, but since ¢ already appears in
a different context on the first line, we must use a different letter, say d.
Similarly let’s use a new letter e in the definition of |c.

Proposition Suppose a,b and c are integers. If a|b and b|c, then a|c.

Proof. Suppose a|b and b|c.
By Definition 4.4, we know a|b means there is an integer d with b =ad.
Likewise, b|c means there is an integer e for which c = be.

Therefore a|c. [ ]
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We have almost bridged the gap. The line immediately above the last line
should show that a|c. According to Definition 4.4, this line should say
that ¢ = ax for some integer x. We can get this equation from the lines at
the top, as follows.

Proposition Suppose a,b and c are integers. If a|b and b|c, then a|c.

Proof. Suppose a|b and b|c.

By Definition 4.4, we know a|b means there is an integer d with 5 =ad.
Likewise, b|c means there is an integer e for which ¢ = be.

Thus ¢ =be =(ad)e =a(de), so ¢ =ax for the integer x =de.

Therefore a|c. u

Here is another example, though this time the proof is presented all at
once rather than in stages.

Proposition If x is an even integer, then x? —6x +5 is odd.

Proof. Suppose x is an even integer.

Then x = 2a for some a € Z, by definition of an even integer.

So x2—6x+5 = (2a)?—6(2a)+5 = 4a%—12a+5 = 4a% ~12a+4+1 = 2(2a®—6a+2)+1.
Therefore we have x> —6x+5=2b+1, where b =2a?>-6a+2€Z.
Consequently x? + 3x +5 is odd, by definition of an odd number. [ |

In writing a proof you do not have to put each sentence on a separate
line. But we will do this for clarity in the first few chapters of this book.

The examples we’ve looked at so far have all been proofs of statements
about integers. In our next example, we are going to prove that if x and y
are positive real numbers for which x <y, then \/x <,/y. You may feel that
the proof is not as “automatic” as the proofs we have done so far. Finding
the right steps in a proof can be challenging, and that is part of the fun.

Proposition Let x and y be positive numbers. If x <y, then /x < /y.

Proof. Suppose x<y.

Subtracting y from both sides gives x—y <0.

This can be written as yx” - /3 <0.

Factor this to get (vx—-/)(v/x+,/)<0.

Dividing both sides by the positive number /x +,/y produces /x—,/y <0.
Adding ,/y to both sides gives vx < /y. [ |
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This proposition tells us that whenever we have x <y, we can take the
square root of both sides and be assured that /x <,/y. This can actually
be useful, as we will see in our next proposition.

The next proposition will concern the expression 2,/xy <x+y. Notice
when you plug in random positive values for the variables, the expression
is true. For example, in plugging in x = 6 and y =4, the left side is
2v6-4=4v6 ~9.79, which is less than the right side 6 +4 =10. Is it true
that 2,/xy <x+y for any positive x and y? How could we prove it?

To see how, let’s first cast this into the form of a conditional statement:
If x and y are positive real numbers, then 2,/xy < x+y. The proof begins
with the assumption that x and y are positive, and ends with 2,/xy <x+y.
In mapping out a strategy, it can be helpful to work backwards, working
from 2,/xy <x+y to something that is obviously true. Then the steps can
be reversed in the proof. In this case, squaring both sides of 2,/xy <x+y
gives us

4xy < x2+ 2xy + y2.

Now subtract 4xy from both sides and factor.

x? —2xy + y*
(x—y)”

IA

IA

But this last line is clearly true, since the square of x—y cannot be negative!
This gives us a strategy for the proof, which follows.

Proposition If x and y are positive real numbers, then 2,/xy <x+y.

Proof. Suppose x and y are positive real numbers.

Then 0 < (x—y)?, so 0<x2—2xy+y2.

Adding 4xy to both sides gives 4xy < x?+2xy + y2, which gives 4xy < (x + y)2.
Taking the square root of both sides produces 2,/xy <x+y. [ ]

Notice that in going from the next-to-last line to the last line of the
proof, we took the square root of both sides of 4xy < (x+y)? and got \/4xy <
V/(x + y)2. The fact that taking roots of both sides does not alter the < follows
from our previous proposition. This is an important point. Sometimes the
proof of a proposition or theorem uses another proposition or theorem.

4.4 Using Cases

In proving a statement is true, we sometimes have to examine multiple
cases before showing the statement is true in all possible scenarios. This
section illustrates a few examples.
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Our examples will concern the expression 1+(-1)"(2n—1). Here is a
table that shows what we get when plugging in various integers for n.
Notice that 1+ (-1)"(2n—1) is a multiple of 4 in every line.

nl|l+-1)"2n-1)

DO W N
oo

4

Is 1+(-1)*(2n—1) always a multiple of 4? We will prove the answer is “yes’
in our next example. Notice, however, that the expression 1+(-1)"(2n—1)
behaves differently depending on whether n is even or odd, for in the first
case (-1)" =1, and in the second (-1)" = —1. Thus the proof must examine
these two possibilities separately.

Proposition IfneN, then 1+(-1)"(2n—1) is a multiple of 4.

Proof. Suppose n eN.

Then n is either even or odd. Let’s consider these two cases separately.
Case 1. Suppose n is even. Then n =2k for some k€7, and (-1)" = 1.
Thus 1+ (-1)"(2n—-1) =1+ (1)(2-2k —1) =4k, which is a multiple of 4.
Case 2. Suppose n is odd. Then n =2k +1 for some k€ Z, and (-1)" = 1.
Thus 1+(-1)"(2n—-1) =1-(2(2k +1)—1) = -4k, which is a multiple of 4.
These cases show that 1+(-1)"(2rn - 1) is always a multiple of 4. [ ]

Now let’s examine the flip side of the question. We just proved that
1+(-1)*(2n—1) is always a multiple of 4, but can we get every multiple of 4
this way? The following proposition and proof give an affirmative answer.

Proposition Every multiple of 4 has form 1+(-1)"(2n—1) for some n € N.

Proof. In conditional form, the proposition is as follows:

If £ is a multiple of 4, then there is an n €N for which 1+(-1)*(2n—1)=k.
What follows is a proof of this conditional statement.

Suppose % is a multiple of 4.

This means % = 4a for some integer a.

We must produce an n €N for which 1+(-1)*(2n-1)=k.

This is done by cases, depending on whether a is zero, positive or negative.
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Case 1. Suppose a =0. Let n=1. Then 1+(-1)"2n-1)=1+(-1)(2-1)=0
=4-0 =4a=k.
Case 2. Suppose a > 0. Let n =2a, which is in N because a is positive. Also
nis even, so (-1)" =1. Thus 1+(-1)"(2n-1)= 1+(2n-1)=2n = 2(2a) =4a = k.
Case 3. Suppose a <0. Let n =1-2a, which is an element of N because
a is negative, making 1-2a positive. Also n is odd, so (-1)" =-1. Thus
1+(-1D"2n-1)=1-2n-1)=1-2(1-2a)—1) =4a =k.

The above cases show that no matter whether a multiple % = 4a of 4 is
zero, positive or negative, it always equals 1+(-1)"(2n —1) for some natural
number n. [ |

4.5 Treating Similar Cases

Occasionally two or more cases in a proof will be so similar that writing
them separately seems tedious or unnecessary. Here is an example.

Proposition If two integers have opposite parity, then their sum is odd.

Proof. Suppose m and n are two integers with opposite parity.

We need to show that m +n is odd. This is done in two cases, as follows.
Case 1. Suppose m is even and »n is odd. Thus m =2a and n=2b+1 for
some integers a and b. Therefore m +n =2a+2b+1=2(a+b)+1, which is
odd (by Definition 4.2).

Case 2. Suppose m is odd and »n is even. Thus m =2a +1 and n =2b for
some integers a and b. Therefore m +n =2a+1+2b=2(a+b)+1, which is
odd (by Definition 4.2).

In either case, m +n is odd. [ |

The two cases in this proof are entirely alike except for the order in
which the even and odd terms occur. It is entirely appropriate to just do
one case and indicate that the other case is nearly identical. The phrase
“Without loss of generality...” is a common way of signaling that the proof
is treating just one of several nearly identical cases. Here is a second
version of the above example.

Proposition If two integers have opposite parity, then their sum is odd.

Proof. Suppose m and n are two integers with opposite parity.

We need to show that m +n is odd.

Without loss of generality, suppose m is even and n is odd.

Thus m =2a and n =2b+1 for some integers a and b.

Therefore m+n =2a+2b+1=2(a+b)+1, which is odd (by Definition 4.2). =
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In reading proofs in other texts, you may sometimes see the phrase

“Without loss of generality” abbreviated as “WLOG.” However, in the

i

nterest of transparency we will avoid writing it this way. In a similar

spirit, it is advisable—at least until you become more experienced in proof
writing—that you write out all cases, no matter how similar they appear
to be.

It is now very important that you practice what you have learned by

doing the following exercises.

Exercises for Chapter 4

Use the method of direct proof to prove the following statements.

© WO O hAWND -

[y
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. If x is an even integer, then x2 is even.

. If x is an odd integer, then 2 is odd.

. If a is an odd integer, then a?+3a +5 is odd.

. Suppose x,y€ Z. If x and y are odd, then xy is odd.
. Suppose x,y € Z. If x is even, then xy is even.

. Suppose a,b,ceZ. If a|b and a|c, then a|(b+c).

. Suppose a,beZ. If a|b, then a?|b2.

. Suppose a is an integer. If 5|2a, then 5|a.
. Suppose a is an integer. If 7|4a, then 7|a.
. Suppose a and b are integers. If a|b, then a|(3b3 — b2 +5b).

11. Suppose a,b,c,deZ. If a|b and c|d, then ac|bd.

12. If xeR and 0 <x <4, then - =1.

13. Suppose x,yeR. If x2+5y=9y2+5x, then x=y or x+y=5.
14. If n€Z, then 5n2 +3n+7 is odd. (Try cases.)

15.
16.
17.
18.
19.
20.
21.
22,
23.
24.

25

If neZ, then n?2+3n+4 is even. (Try cases.)

If two integers have the same parity, then their sum is even. (Try cases.)
If two integers have opposite parity, then their product is even.

Suppose x and y are positive real numbers. If x <y, then x? < y2.
Suppose a,b and ¢ are integers. If a?|b and b®|c, then a®|c.

If @ is an integer and a?|a, then a € {-1,0,1}.

If p is prime and % is an integer for which 0 <% < p, then p divides (%).

If neN, then n2=2(})+(}). (You may need a separate case for n=1.)

If neN, then (*") is even.

If neN and n =2, then the numbers n!+2, n!+3, n!'+4, n!+5,... n!+n are
all composite. (This means that for any n, no matter how big, there exist n
consecutive composite numbers. In other words there are arbitrarily large
“gaps” between prime numbers.)

. Ifa,b,ceN and ¢ <b <a, then (§)(°) = (,°.)(*"2*9).

c c



CHAPTER 5

Contrapositive Proof

his chapter explains an alternative to direct proof called contraposi-
tive proof. Like direct proof, the technique of contrapositive proof is
used to prove conditional statements of the form “If P, then @.” Although
it is possible to use direct proof exclusively, there are occasions where
contrapositive proof is much easier.

5.1 Contrapositive Proof

To understand how contrapositive proof works, imagine that you need to
prove a proposition of the following form.

Proposition If P, then Q.

This is a conditional statement of form P = @. Our goal is to show
that this conditional statement is true. To see how to proceed, recall that
in Section 2.6 we observed that P = @ is logically equivalent to ~@ =~ P.
For convenience, we duplicate the truth table that verifies this fact.

P|Q|~Q|~P|P=>Q|~@=>~P
T|T F F T T
T|F T F F F
F|T F T T T
F | F T T T T

According to the table, statements P = @ and ~ @ =~ P are different
ways of expressing exactly the same thing. To prove P = @ is true, it
suffices to prove ~@ =~ P is true. If we were to use direct proof to show
~ @ =~ P is true, we would assume ~ @ is true use this to deduce that
~ P is true. This in fact is the basic approach of contrapositive proof,
summarized as follows.
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Outline for Contrapositive Proof.

Proposition If P, then Q.

Proof. Suppose ~@.

Therefore ~ P. [ |

So the setup for contrapositive proof is very simple. The first line of the
proof is the sentence “Suppose @ is not true.” (Or something to that effect.)
The last line is the sentence “Therefore P is not true.” Between the first
and last line we use logic and definitions to transform the statement ~ @
to the statement ~ P.

To illustrate this new technique, and to contrast it with direct proof,
we now prove a proposition in two ways: first with direct proof and then
with contrapositive proof.

Proposition Suppose xeZ. If 7x+9 is even, then x is odd.

Proof. (Direct) Suppose 7x+9 is even.

Thus 7x+9 = 2a for some integer a.

Subtracting 6x +9 from both sides, we get x =2a —6x 9.

Thus x=2a-6x-9=2a-6x-10+1=2(a—3x—-5)+1.

Consequently x =2b+1, where b=a—-3x-5€Z.

Therefore x is odd. u

Here is a contrapositive proof of the same statement.

Proposition Suppose xeZ. If 7x+9 is even, then x is odd.

Proof. (Contrapositive) Suppose x is not odd.

Thus x is even, so x = 2a for some integer a.

Then 7Tx+9=72a)+9=14a+8+1=2(Ta +4)+1.

Therefore 7x+9 =2b+1, where b is the integer 7a +4.

Consequently 7x+9 is odd.

Therefore 7x +9 is not even. [ ]

Though the proofs are of equal length, you may feel that the con-
trapositive proof flowed more smoothly. This is because it is easier to
transform information about x into information about 7x+9 than the other
way around. For our next example, consider the following proposition
concerning an integer x.

Proposition If x> - 6x+5 is even, then x is odd.
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A direct proof would be problematic. We would begin by assuming that
x2—6x+5 is even, so x2—6x+5 = 2a. Then we would need to transform this
into x =2b+1 for b € Z. But it is not at all clear how that could be done,
for it would involve isolating an x from the quadratic expression. However
the proof becomes very simple if we use contrapositive proof.

Proposition Suppose x € Z. If x? - 6x +5 is even, then x is odd.

Proof. (Contrapositive) Suppose x is not odd.

Thus x is even, so x = 2a for some integer a.

So x2—6x+5 = (2a)?-6(2a)+5 = 4a%~12a+5 = 4a% —12a+4+1 = 2(2a®—6a+2)+1.
Therefore x2 —6x+5=2b+1, where b is the integer 2a® - 6a + 2.
Consequently x? —6x+5 is odd.

Therefore x? —6x +5 is not even. [ ]

In summary, since x being not odd (~ ) resulted in x?—6x+5 being not
even (~ P), then x? - 6x+5 being even (P) means that x is odd (). Thus
we have proved P = @ by proving ~@ =~ P. Here is another example.

Proposition Suppose x,y € R. If y2 + yx? <23 + xy2, then y <«x.

Proof. (Contrapositive) Suppose it is not true that y <x, so y > «.
Then y—x>0. Multiply both sides of y —x >0 by the positive value x2 + y2.

(y-0@®+y*) > 0
yx2+y3—x3—xy2 > 0
Y+yx? > 2B+xy?

3

Therefore y3 + yx? > x3 + xy2, so it is not true that y% + yx? < 2 + xy2. [ |

Proving “If P, then @.” with the contrapositive approach necessarily
involves the negated statements ~ P and ~@. In working with these we
my have to use the techniques for negating statements (e.g. DeMorgan’s
Laws) discussed in Section 2.10. Here is an example.

Proposition Suppose x,yeZ. If 5)xy, then 5f/x and 5/ y.

Proof. (Contrapositive) Suppose it is not true that 5/x and 5/ y.

By DeMorgan’s Law, it is not true that 5 fx or it is not true that 5/ y.
Therefore 5|x or 5|y. We consider these possibilities separately.

Case 1. Suppose 5|x. Then x =5a for some a €Z.

From this we get xy =5(ay), and that means 5|xy.
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Case 2. Suppose 5|y. Then y =5a for some a € Z.
From this we get xy = 5(ax), and that means 5|xy.
The above cases show that 5|xy, so it is not true that 5 f xy. [ |

5.2 Congruence of Integers

This is a good time to introduce a new definition. Though it is not neces-
sarily related to contrapositive proof, introducing it now will ensure that
we have a sufficient variety of exercises to practice all our proof techniques
on. This new definition is also useful in many branches of mathematics,
and you will surely see it in some of your later courses. But our primary
reason for introducing it is that it will give us more practice in writing
proofs.

Definition 5.1 Given integers a and b and an n €N, we say that a and
b are congruent modulo n if n|(a —b). We express this as a =b (mod n).
If @ and b are not congruent modulo n, we write this as a Zb (mod n).
Example 5.1 Here are some examples

1. 9=1 (mod 4) because 4[(9-1).

6 =10 (mod 4) because 4|(6—10).

14 # 8 (mod 4) because 4 f(14—8).

20 =4 (mod 8) because 8(20 —4).

17 = -4 (mod 3) because 3[(17 —(—4)).

A

In practical terms, a =b (mod n) means that a and b have the same
remainder when divided by n. For example, we saw above that 6 = 10
(mod 4) and indeed 6 and 10 both have remainder 2 when divided by 4.
Also we saw 14 # 8 (mod 4), and sure enough 14 has remainder 2 when
divided by 4, while 8 has remainder 0.

To see that this is true in general, note that if a and 5 both have the
same remainder r when divided by 7, then it follows that a = kn +r and
b=/¢n+r for some k,¢cZ. Thena-b= (kn+r)—-(¢n+r)= n(k-2¢). But
a—b=n(k—¢) means n|(a—>b), so a=b (mod n). Conversely, one of the
exercises for this chapter asks you to show that if ¢ =6 (mod r), then o
and b have the same remainder when divided by =.

We conclude this section with a couple of proofs involving congruence of
integers, but you will also test your skills with other proofs in the exercises.
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Proposition Suppose a,b€Z and neN. If a =b (mod n), then a? = b2
(mod n).

Proof. We will use direct proof. Suppose a =b (mod n).

By definition of congruence of integers, this means n|(a - b).

Then by definition of divisibility, there is an integer ¢ for which a —b = nec.
Now multiply both sides of this equation by a + 5.

a-b = nec
(a—b)a+b) = ncla+d)
a’-b%> = ncla+b)

Since c(a + b) € Z, the above equation tells us n|(a? - b2).
According to Definition 5.1, this gives a? = 52 (mod n). [ |

Let’s stop and think about what this proposition means. It says a=b
(mod n) implies a? = b2 (mod n). In other words, it says that if integers a
and b have the same remainder when divided by n, then a? and 52 also
have the same remainder when divided by n. As an example of this, 6 and
10 have the same remainder (2) when divided by n =4, and their squares
36 and 100 also have the same remainder (0) when divided by n =4. The
proposition promises this will happen for all a, b6 and n. In our examples
we tend to concentrate more on how to prove propositions than on what
the propositions mean. This is reasonable since our main goal is to learn
how to prove statements. But it is helpful to sometimes also think about
the meaning of what we prove.

Proposition Suppose a,b,ceZ and neN. If a=b (mod n), then ac =bc
(mod n).

Proof. We employ direct proof. Suppose a =b (mod n). By Definition 5.1, it
follows that n|(a —b). Therefore, by definition of divisibility, there exists an
integer %k for which a — 5 = nk. Multiply both sides of this equation by c to
get ac—bc =nke. Thus ac—bc =n(ke) where kc € Z, which means n|(ac—bc).
By Definition 5.1, we have ac=bc¢ (mod n). [ ]

Contrapositive proof seems to be the best approach in the next example,
since it will eliminate the symbols f and #.
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Proposition Suppose a,b€Z and neN. If 12a # 12b (mod n), then n f12.

Proof. (Contrapositive) Suppose n|12, so there is an integer ¢ for which
12 =nc. Now reason as follows.

a-b = a-b
12(a — b) ne(a—0b)
12¢ —-12b = n(ca—cb)

Since ca —cb € Z, the equation 12a — 12b = n(ca — ¢b) implies n|(12a — 12b).
This in turn means 12a = 125 (mod n). [ ]

5.3 Mathematical Writing

Now that you have begun writing proofs, it is the right time to address
issues concerning writing. Unlike logic and mathematics, where there
is a clear-cut distinction between what is right or wrong, the difference
between good and bad writing is sometimes a matter of opinion. But there
are some standard guidelines that will make your writing clearer. Some
of these are listed below.

1. Never begin a sentence with a mathematical symbol. The reason
is that sentences begin with capital letters, but mathematical symbols
are case sensitive. Since x and X can have entirely different meanings,
putting such symbols at the beginning of a sentence can lead to ambiguity.
Following are some examples of bad usage (marked with x) and good
usage (marked with v).

A is a subset of B.

X
The set A is a subset of B. v
x is an integer, so 2x +5 is an integer. x
Since x is an integer, 2x +5 is an integer. v
x2—x+2=0 has two solutions. x
X2 -x+2=0 has two solutions. x (and silly too)
The equation x2 —x+2 =0 has two solutions. v

2. End each sentence with a period. Do this even when the sentence
ends with a mathematical symbol or expression.

Euler proved that Z
-1

_

peP 1

w|+_. w|

Euler proved that Z
k=1 pEP 1--=
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Mathematical statements (equations, inequalities, etc.) are like En-
glish phrases that happen to contain special symbols, so use normal
punctuation.

3. Separate mathematical symbols and expressions with words.

Failure to do this can cause confusion by making distinct expressions
appear to merge into one. Compare the clarity of the following examples.

Since x2-1=0,x=1or x = —1. X
Since x2-1=0, it follows that x=1 or x = —1. v
Unlike AuB, AnB equals @. x
Unlike A UB, the set AnB equals @. v

4. Avoid misuse of symbols. Symbols such as =, <, ¢, €, etc. are not
words. While it is appropriate to use them in mathematical expressions,
they are out of place in other contexts.

Since the two sets are =, one is a subset of the other. x
Since the two sets are equal, one is a subset of the other. v
The empty set is a < of every set. x
The empty set is a subset of every set. v
Since a is odd and x odd = x2 odd, a? is odd. x

Since a is odd and any odd number squared is odd, then a? is odd.v’

5. Avoid using unnecessary symbols. Mathematics is confusing enough
without them. Don’t muddy the water even more.

No set X has negative cardinality. X
No set has negative cardinality. v

6. Use the first person plural. In mathematical writing, it is common
to use the words “we” and “us” rather than “I,” “you” or “me.” It is as if
the reader and writer are having a conversation, with the writer guiding
the reader through the details of the proof.

7. Use the active voice. This is just a suggestion, but the active voice
makes your writing more lively.

The value x = 3 is obtained through the division of both sides by 5.x
Dividing both sides by 5, we get the value x = 3. v

8. Explain each new symbol. In writing a proof, you must explain the
meaning of every new symbol you introduce. Failure to do this can lead
to ambiguity, misunderstanding and mistakes. For example, consider
the following two possibilities for a sentence in a proof, where a and b
have been introduced on a previous line.
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Since a|b, it follows that b =ac. x
Since a|b, it follows that b = ac for some integer c. v

If you use the first form, then a reader who has been carefully following
your proof may momentarily scan backwards looking for where the ¢
entered into the picture, not realizing at first that it comes from the
definition of divides.

9. Watch out for “It.” The pronoun “it” can cause confusion when it
unclear what it refers to. If there is any possibility of confusion, you
should avoid the word “it.” Here is an example.

Since X €Y, and 0 < |X|, we see that it is not empty. x
Is “it” X or Y? Either one would make sense, but which do we mean?
Since X €Y, and 0 < |X|, we see that Y is not empty. v

10. Since, because, as for, so. In proofs, it is common to use these
words as conjunctions joining two statements, and meaning that one
statement is true and as a consequence the other true. The following
statements all mean that P is true (or assumed to be true) and as a
consequence @ is true also.

Q since P Q@ because P Q,as P Q, for P P,so @
Since P, @ Because P, @ as P, @

Notice that the meaning of these constructions is different from that of
“If P, then Q”, for they are asserting not only that P implies @, but also
that P is true. Exercise care in using them. It must be the case that P
and @ are both statements and that @ really does follow from P.

x€eN, so Z X
xeN, soxe”Z v

11. Thus, hence, therefore consequently. These adverbs precede a
statement that follows logically from previous sentences or clauses. Be
sure that a statement follows them.

Therefore 2% + 1. x
Therefore a =2k + 1. v

Your mathematical writing will get better with practice. One of the
best ways to develop a good mathematical writing style is to read other
people’s proofs. Adopt what works and avoid what doesn’t.
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Exercises for Chapter 5

A. Use the method of contrapositive proof to prove the following statements. (In
each case you should also think about how a direct proof would work. You will
find in most cases that contrapositive is easier.)

Suppose n € Z. If n? is even, then n is even.

Suppose n e Z. If n? is odd, then n is odd.

Suppose a,b € Z. If a?(b% - 2b) is odd, then a and b are odd.

Suppose a,b,c e Z. If a does not divide bc, then a does not divide b.
Suppose x € R. If 2% +5x <0 then x <0.

Suppose x € R. If x3 —x >0 then x > —1.

Suppose a,b € Z. If both ab and a + b are even, then both a and b are even.
Suppose x € R. If x5 —4x* +3x3 —x%2 +3x -4 >0, then x> 0.

. Suppose neZ. If 3 yn?, then 3 fn.

10. Suppose x,y,z€Z and x #0. If x fyz, then x fy and x }z.

© 0N Do w e

11. Suppose x,y € Z. If x%(y +3) is even, then «x is even or y is odd.
12. Suppose a € Z. If a? is not divisible by 4, then a is odd.
13. Suppose x€R. If x® + 7x® + 5x = x* + x% + 8, then x = 0.

B. Prove the following statements using either direct or contrapositive proof.
Sometimes one approach will be much easier than the other.

14. If a,b € Z and a and b have the same parity, then 3¢ +7 and 7b -4 have
opposite parity.

15. Suppose x € Z. If x3 -1 is even, then x is odd.

16. Suppose x€ Z. If x+y is even, then x and y have the same parity.

17. If n is odd, then 8|(n?-1).

18. For any a,b € Z, it follows that (a +b)3 =a® + b3 (mod 3).

19. Leta,beZ and neN. If a=b (mod n) and a =c¢ (mod n), then ¢ =5 (mod n).

20. Ifae€Z and a =1 (mod 5), then a2 =1 (mod 5).

21. Let a,b€Z and neN. If a =b (mod n), then a® =53 (mod n)

22. Let a€Z and neN. If a has remainder » when divided by n, then a=r
(mod n).

23. Let a,b,ceZ and neN. If a=b (mod n), then ca =cb (mod n).
24, If a=b (mod n) and ¢ =d (mod n), then ac=bd (mod n).
25. If neN and 2" -1 is prime, then n is prime.

26. If n=2% -1 for some % € N, then every entry in Row n of Pascal’s Triangle
is odd.

27. If a=0 (mod 4) or a =1 (mod 4), then (%) is even.



CHAPTER 6

Proof by Contradiction

e now introduce a third method of proof, called proof by contra-
diction. This new method is not limited to proving just conditional
statements — it can be used to prove any kind of statement whatsoever.
The basic idea is to assume that the statement we want to prove is false,
and then show that this assumption leads to nonsense. We are then led
to conclude that we were wrong to assume the statement was false, so
the statement must be true. As an example of this, consider the following
proposition and its proof.

Proposition If a,b€Z, then a®-4b #2.

Proof. Suppose this proposition is false.

This conditional statement being false means there exist numbers a and b
for which a,b € Z is true but a? —4b #2 is false.

Thus there exist integers a,b € Z for which

From this equation we get a? =4b +2=2(2b + 1), so a? is even.

Since a? is even, it follows that a is even, so a = 2¢ for some integer c.
Now plug a = 2¢ back into the boxed equation a?—4b =2.

We get (2¢)2 —4b =2, so 4c? —4b = 2. Dividing by 2, we get 2¢2 -2b = 1.
Therefore 1 =2(c2-b), and since ¢?-b € Z, it follows that 1 is even.

Since we know 1 is not even, something went wrong.

But all the logic after the first line of the proof is correct, so it must be
that the first line was incorrect. In other words, we were wrong to assume
the proposition was false. Thus the proposition is true. [ |

Though you may be a bit suspicious of this line of reasoning, in the
next section we will see that it is logically sound. For now, notice that
at the end of the proof we deduced that 1 is even, which conflicts with
our knowledge that 1 is odd. In essence, we have obtained the statement
(1 is odd)A ~ (1 is odd), which has the form CA ~C. Notice that no matter
what statement C is, and whether or not it is true, the statement CA ~C
must be false. A statement—like this one—that cannot be true is called a
contradiction. Contradictions play a key role in our new technique.
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6.1 Proving Statements with Contradiction

Let’s now see why the proof on the previous page is logically valid. In
that proof we needed to show that a statement P:(a,b€Z)= (a2 —4b #2)
was true. The proof began with the assumption that P was false, that is
that ~ P was true, and from this we deduced CA ~C. In other words we
proved that ~ P being true forces CA ~C to be true, and this means that
we proved that the conditional statement (~ P)= (C A ~C) is true. To see
that this is the same as proving P is true, look at the following truth table
for (~P)= (C A ~C). Notice that the columns for P and (~P)=(C A ~C)
are exactly the same, so P is logically equivalent to (~P)= (C A ~C).

P|C|~P| CA~C | (~P)=>(CAr~C)
T |\T|F F T
T|F|F F T
F\T|T F F
F|\F|T F F

Therefore to prove a statement P, it suffices to instead prove the conditional
statement (~ P)= (C A ~C). This can be done with direct proof: Assume
~P and deduce C A ~C. Here is the outline.

Outline for Proof by Contradiction.

Proposition P.

Proof. Suppose ~P.

Therefore C A ~C. [ ]

One slightly unsettling feature of this method is that we may not know
at the beginning of the proof what the statement C is going to be. In
doing the scratch work for the proof, you assume that ~ P is true, then
deduce new statements until you have deduced some statement C and its
negation ~C.

If this method seems confusing, look at it this way. In the first line of
the proof we suppose ~ P is true, that is we assume P is false. But if P is
really true then this contradicts our assumption that P is false. But we
haven’t yet proved P to be true, so the contradiction is not obvious. We
use logic to transform the non-obvious contradiction PA ~ P to an obvious
contradiction CA ~C.
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The idea of proof by contradiction is quite ancient, and goes back at
least as far as the Pythagoreans, who used it to prove that certain numbers
are irrational. Our next example follows their logic to prove that v2 is
irrational. Recall that a number is rational if it equals a fraction of two
integers, and it is irrational if it cannot be expressed as a fraction of two
integers. Here is the exact definition.

Definition 6.1 A real number x is rational if x = 7, for some a,b € Z.
The number x is irrational if it is not rational, that is if x # § for every
a,be”.

We are now ready to use contradiction to prove that v/2 is irrational.
According to the outline, the first line of the proof should be “Suppose that
it is not true that /2 is irrational." But in writing the proof, it is helpful
(though not mandatory) to tip our reader off to the fact that we are using
proof by contradiction. One standard way of doing this is to make the first
line “Suppose for the sake of contradiction that it is not true that v2 is
irrational."

Proposition The number /2 is irrational.

Proof. Suppose for the sake of contradiction that it is not true that v2 is
irrational. Then v2 is rational, so there are integers a and b for which

va=2 (6.1)

b
Let this fraction be fully reduced. In particular, this means a and b are
not both even, for if they were, the fraction could be further reduced by
factoring 2’s from the numerator and denominator and canceling. Squaring

a?

both sides of Equation 6.1 gives 2= {;, and therefore
a® =202 (6.2)

From this it follows that a? is even. But we proved at the beginning of this
chapter that a? being even implies a is even. Thus, as we know that a and
b are not both even, it follows that b is odd. Now, since a is even there
is an integer ¢ for which a = 2¢. Plugging this value for a into Equation 6.2,
we get (2¢)? = 2b2, so 4¢? =2b2, and hence b2 =2¢2. This means b2 is even,
so b is even also. But previously we deduced that & is odd. Thus we have
the contradiction b is even and b is odd. [ ]

To appreciate the power of proof by contradiction, imagine trying to
prove that v/2 is irrational without it. Where would we begin? What would
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be our initial assumption? There are no clear answers to these questions.
Proof by contradiction gives us a starting point: assume V2 is rational,
and work from there.

In the above proof we got the contradiction (b is even) A ~(b is even)
which has the form CA ~ C. In general, your contradiction need not
necessarily be of this form. Any statement that is clearly false is sufficient.
For example 2 # 2 would be a fine contradiction, as would be 4|2, provided
that you could deduce them.

Here is another ancient example, dating back at least as far as Euclid.

Proposition There are infinitely many prime numbers.

Proof. For the sake of contradiction, suppose there are only finitely many
prime numbers. Then we can list all the prime numbers as p1,pe,ps,...pn,
where p1 =2,p2=3,p3=5,p4 =7, and so on. Thus p, is the nth and largest
prime number. Now consider the number a =(p1p2ps---p,)+1, that is a is
the product of all prime numbers, plus 1. Now a, like any natural number,
has at least one prime divisor, and that means p; |a for at least one of our
n prime numbers p;. Thus there is an integer ¢ for which a = cp;, which
is to say

(P1P2P3" " Pr—1PEPkR+1" " Pn)+1=cpy.
Dividing both sides of this by p; gives us

1
(p1P2P3 " Pr-1Pk+1" " Pn)+ —=c

SO

1
p_k =c—(p1pP2P3 " "Pr-1Pk+1"""Pn)-

The expression on the right is an integer, while the expression on the left is
not an integer. These numbers can’t be equal, so this is a contradiction. H

Proof by contradiction often works well in proving statements of the
form Vx,P(x). The reason is that the proof set-up involves assuming
~Vx,P(x), which as we know from Section 2.10 is equivalent to 3x,~ P(x).
This gives us a specific x for which ~ P(x) is true, and often that is enough
to produce a contradiction. Here is an example.

Proposition For every real number x € [0,7/2], we have sinx +cosx = 1.

Proof. Suppose for the sake of contradiction that this is not true.
Then there exists an x € [0,7/2] for which sinx +cosx < 1.
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Since x € [0,7/2], neither sinx nor cosx is negative, so 0 <sinx +cosx < 1.
Thus 02 < (sinx + cosx)? < 12, which gives 0% < sin?x + 2sinxcosx + cos?x < 12,
As sin® 2x =1, this becomes 0<1+2sinxcosx <1, so 1+2sinxcosx < 1.
Subtracting 1 from both sides gives 2sinxcosx < 0.

But this contradicts the fact that neither sinx nor cosx is negative. [ ]

X + CoS

6.2 Proving Conditional Statements by Contradiction

Since the previous two chapters dealt exclusively with proving conditional
statements, we now formalize the procedure in which contradiction is used
to prove a conditional statement. Suppose we want to prove a proposition
of the following form.

Proposition If P, then Q.

Thus we need to prove that P = @ is a true statement. Proof by
contradiction begins with the assumption that ~ (P = @) it true, that is
that P = @ is false. But we know that P = @ being false means that P is
true and @ is false. Thus the first step in the proof it to assume P and
~@. Here is an outline.

Outline for Proving a Conditional
Statement with Contradiction.

Proposition If P, then Q.

Proof. Suppose P and ~ Q.

Therefore C A ~C. [ |

To illustrate this new technique, we revisit a familiar result: If a2 is
even, then a is even. According to the outline, the first line of the proof
should be “Suppose for the sake of contradiction that a? is even and a is
not even."

Proposition Suppose a € Z. If a? is even, then a is even.

2 js even and a is not even.

Proof. For the sake of contradiction suppose a
Then a? is even, and « is odd.

Since a is odd, there is an integer ¢ for which a =2c¢+1.

Then a? =(2c+1)2 =4c? +4c+1=22¢% +2¢)+1, so a? is odd.

Thus «? is even and a? is not even, a contradiction. (And since we have
arrived at a contradiction, our original supposition that a? is even and a

is odd could not be true.) [ ]
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Here is another example.

Proposition Ifa,b€Z and a =2, then a }/b or a f(b+1).

Proof. Suppose for the sake of contradiction there exist a,b € Z with a =2,
and for which it is not true that a Y b or a J(b+1).

By DeMorgan’s Law, we have a|b and a|(b+1).

The definition of divisibility says there are c,d € Z with 6 =ac and b+1 =ad.
Subtracting one equation from the other gives ad —ac=1, or a(d —c)=1.
Since a is positive, d—c is also positive (otherwise a(d—c) would be negative).
Then d —c is a positive integer and a(d —c¢)=1, so a =1/(d —c) < 2.

Thus we have a =2 and a <2, a contradiction. |

6.3 Combining Techniques

Often, especially in more complex proofs, several proof techniques are
combined within a single proof. For example, in proving a conditional
statement P = @, we might begin with direct proof and thus assume P to
be true with the aim of ultimately showing @ is true. But the truth of
® might hinge on the truth of some other statement R which—together
with P—would imply @. We would then need to prove R, and we would
use whichever proof technique seems most appropriate. This can lead to
“proofs inside of proofs." Consider the following result. The overall approach
is direct, but inside the direct proof is a separate proof by contradiction.

Proposition Every nonzero rational number can be expressed as a
product of two irrational numbers.

Proof. This proposition can be reworded as follows: If r is a nonzero
rational number, then r is a product of two irrational numbers. In what
follows, we prove this with direct proof.

Suppose r is a nonzero rational number. Then r = § for integers a and
b. Also, r can be written as a product of two numbers as follows.

7‘2\/5'@.

We know /2 is irrational, so to complete the proof we must show r/v/2 is
also irrational.

To show this, assume for the sake of contradiction that r/v/2 is rational.
This means

ol
Ul o
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for integers ¢ and d, so

d
V2=r=.
c
But we know r = a/b, which combines with the above equation to give
3 d ad ad
=r—-=--—==—,
¢c bcec b

This means /2 is rational, which is a contradiction because we know it is
irrational. Therefore r/v/2 is irrational.
Consequently r = v2-r/v/2 is a product of two irrational numbers. ®

For another example of a proof-within-a-proof, try Exercise 5 of this
chapter and then check its solution. That exercise asks you to prove that
V3 is irrational. This turns out to be slightly trickier than proving that
V2 is irrational.

6.4 Some Words of Advice

Despite the power of proof by contradiction, it’s best to use it only when the
direct and contrapositive approaches do not seem to work. The reason for
this is that a proof by contradiction can often have hidden in it a simpler
contrapositive proof, and if this is the case it’s better to go with the simpler
approach. Consider the following example.

Proposition Suppose a€Z. If a® —2a +7 is even, then a is odd.

Proof. To the contrary, suppose a®—2a + 7 is even and a is not odd.

That is, suppose a? —2a + 7 is even and a is even.

Since a is even, there is an integer ¢ for which a =2c.

Then a?-2a+7=(2¢)?2—2(2¢)+7=2(2¢2-2¢+3)+1, so a®—2a +7 is odd.
Thus a? —2a +7 is both even and odd, a contradiction. [ |

Though there is nothing really wrong with this proof, notice that part
of it assumes a is not odd and deduces that a® —2a + 7 is not even. That is
the contrapositive approach! Thus it would be more efficient to proceed as
follows, using contrapositive proof.

Proposition Suppose a€Z. If a®2—2a +7 is even, then a is odd.

Proof. (Contrapositive) Suppose a is not odd.

Then a is even, so there is an integer ¢ for which a =2c.

Then a?-2a+7=(2¢)?2-2(2¢)+7=2(2¢2-2¢+3)+1, so a®—2a +7 is odd.
Thus a? —2a +7 is not even. [
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Exercises for Chapter 6

A. Use the method of proof by contradiction to prove the following statements.
(In each case you should also think about how a direct or contrapositive proof
would work. You will find in most cases that proof by contradiction is easier.)

Suppose n e Z. If n is odd, then n? is odd.

Suppose n € Z. If n? is odd, then n is odd.

Prove that V2 is irrational.

Prove that v/6 is irrational.

Prove that v/3 is irrational.

If a,b€Z, then a®-4b-2#0.

If a,b€Z, then a2 —4b—-3#0.

Suppose a,b,c€Z. If a® + b% = c?, then a or b is even.

© ® XSO

Suppose a,b eR. If a is rational and ab is irrational, then b is irrational.
10. There exist no integers a and b for which 21a + 3056 = 1.
11. There exist no integers a and b for which 18a +6b =1.

12. For every positive rational number x, there is a positive rational number y
for which y < x.

13. For every x € [n/2,7], sinx —cosx = 1.

14. If A and B are sets, then An(B-A)=¢.

15. If b€ Z and btk for every k€N, then b =0.

16. If ¢ and b are positive real numbers, then a +b <2vab.

17. For every neZ, 4 J(n?+2).

18. Suppose a,b € Z. If 4|(a® + b?), then a and b are not both odd.

B. Prove the following statements using any method from chapters 4, 5 or 6.

19. The product of any five consecutive integers is divisible by 120. (For
example, the product of 3,4,5,6 and 7 is 2520, and 2520 = 120-21.)

20. We say that a point P = (x,y) in the Cartesian plane is rational if both x
and y are rational. More precisely, P is rational if P = (x,y) € Q2. An equation
F(x,y) =0 is said to have a rational point if there exists xy,y9 € Q such
that F(xg,vo) = 0. For example, the curve x2+ y? —1 =0 has rational point
(x0,%0) = (1,0). Show that the curve x%+y% —3 =0 has no rational points.

21. Exercise 20 involved showing that there are no rational points on the curve
x2+y2—3=0. Use this fact to show that v/3 is irrational.

22. Explain why x2 + y2 —3 =0 not having any rational solutions (Exercise 20)
implies x% + y2 — 3% = 0 has no rational solutions for 2 an odd, positive integer.

23. Use the above result to prove that v/3* is irrational for all odd, positive %.
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CHAPTER 7

Proving Non-conditional Statements

he past three chapters have introduced three major proof techniques:

direct, contrapositive and contradiction. These three techniques are
used to prove statements of the form “If P, then @.” As we know, most the-
orems and propositions have this conditional form or they can be reworded
to have this form. Thus the three main techniques are quite important.
But some theorems and propositions cannot be put into conditional form.
For example, some theorems have form “P if and only if @.” Such theorems
are biconditional statements, not conditional statements. In this chapter
we examine ways of proving theorems of this form. In addition to learning
how to prove if-and-only-if theorems, we will also look at two other types
of theorems.

7.1 If-And-Only-If Proof
Some propositions have the form
P if and only if @.

We know from Section 2.4 that this statement asserts that both of the
following two conditional statements are true.

If P, then Q.
If @, then P.

So to prove “P if and only if @,” we need to prove two conditional state-
ments. Recall from Section 2.4 that @ = P is called the converse of P = Q.
Thus we need to prove both P = @ and its converse. Since these are both
conditional statements we may prove them with either direct, contraposi-
tive or contradiction proof. Here is an outline.

Outline for If-And-Only-If Proof.
Proposition P if and only if @.

Proof.
[Prove P = @ using direct, contrapositive or contradiction proof.]
[Prove @ = P using direct, contrapositive or contradiction proof.] m
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Let’s start with a very simple example. You already know that an
integer n is odd if and only if n? is odd, but let’s prove it anyway, just
to illustrate the outline. In this example we prove (n is odd)=(n? is odd)
using direct proof and (n? is odd)=(n is odd) using contrapositive proof.

Proposition The integer n is odd if and only if n? is odd.

Proof. First we show that n being odd implies that n? is odd. Suppose n
is odd. Then, by definition of an odd number, n =2a + 1 for some integer a.
Thus n? = (2a +1)? = 44 +4a +1 = 2(2a® + 2a) + 1. This expresses n? as twice
an integer, plus 1, so »n? is odd.

Conversely, we need to prove that n? being odd implies that » is odd.
We use contrapositive proof. Suppose n is not odd. Then n is even, so
n = 2a for some integer a (by definition of an even number). Thus n? =
(2a)? = 2(2a2), so n? is even because it’s twice an integer. Thus n? is not
odd. We’ve now proved that if n is not odd, then n? is not odd, and this is
a contrapositive proof that if n? is odd then » is odd. [ |

In proving “P if and only if @,” you should always begin a new paragraph
when starting the proof of @ = P. Since this is the converse of P = @, it’s
a good idea to begin the paragraph with the word “Conversely” (as we did
above) to remind the reader that you've finished the first part of the proof
and are moving on to the second. Likewise, it’s a good idea to remind the
reader of exactly what statement that paragraph is proving.

The next example uses direct proof in both parts of the proof.

Proposition Suppose a and b are integers. Then a =5 (mod 6) if and
only if a =b (mod 2) and a =56 (mod 3).

Proof. First we prove that if a =5 (mod 6), then a =5 (mod 2) and a=b
(mod 3). Suppose a =b (mod 6). This means 6|(a —b), so there is an integer
n for which

a—b==6n.

From this we get a —b =2(3n), which implies 2|(a —b), so a =b (mod 2). But
we also get a —b = 3(2n), which implies 3|(a —b), so a =b (mod 3). Therefore
a=b (mod 2) and a =b (mod 3).

Conversely, suppose a =b (mod 2) and a =b (mod 3). Since a =b (mod 2)
we get 2|(a —b), so there is an integer & for which a —b =2k. Therefore a —b
is even. Also, from a =b (mod 3) we get 3|(a —b), so there is an integer ¢
for which

a—b=3¢.
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But since we know a — b is even, it follows that ¢ must be even also, for
if it were odd then a — b =3¢ would be odd. (Because a —b would be the
product of two odd integers.) Hence ¢ = 2m for some integer m. Thus
a—-b=3¢=3-2m =6m. This means 6|(a —b), so a =b (mod 6). [ |

Since if-and-only-if proofs simply combine methods with which we are
already familiar, we will not do any further examples in this section.
However it is of utmost importance that you practice your skill on some of
this chapter’s exercises.

7.2 Equivalent Statements

In other courses you will sometimes encounter a certain kind of theorem
that is neither a conditional nor a biconditional statement. Instead, it
asserts that a list of statements is “equivalent.” You saw this (or will see
it) in your linear algebra textbook, which featured the following theorem.

Theorem Suppose A is an n xn matrix. The following statements are
equivalent.

(a) The matrix A is invertible.

(b) The equation Ax=b has a unique solution for every b € R”.
(¢) The equation Ax =0 has only the trivial solution.

(d) The reduced row echelon form of A is I,,.

(e) det(A)#0.

(f) Matrix A does not have 0 as an eigenvector.

When a theorem asserts that a list of statements is “equivalent,” it is
asserting that either the statements are all true, or they are all false.
Thus the above theorem tells us that whenever we are dealing with a
particular n x n matrix A, then either the statements (a) through (f) are all
true for A, or statements (a) through (f) are all false for A. For example, if
we happen to know that det(A) # 0, the theorem assures us that in addition
to statement (e) being true, all the statements (a) through (f) are true. On
the other hand, if it happens that det(A) =0, the theorem tells us that all
statements (a) through (f) are false. In this way, the theorem multiplies
our knowledge of A by a factor of six. Obviously that can be very useful.

What method would we use to prove such a theorem? In a certain
sense, the above theorem is like an if-and-only-if theorem. An if-and-only-if
theorem of form P < @ asserts that P and @ are either both true or both
false, that is that P and @ are equivalent. To prove P < @ we prove P = @
followed by @ = P, essentially making a “cycle” of implications from P to @
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and back to P. Similarly, one approach to proving the theorem cited at the
beginning of this section would be to prove (a) = (b), then (b) = (¢), then
(¢) = (d), then (d) = (e), then (e) = (f), and finally (f) = (a). This pattern is

illustrated below.
(@) = b)) = (o

f J
(f) <= (6 <= ()

Notice that if these six implications have been proved, then it really does
follow that the statements (a) through (f) are either all true or all false.
If one of them is true then the circular chain of implications forces them
all to be true. On the other hand, if one of them (say (c)) is false, the fact
that (b) = (e) is true forces (b) to be false. This combined with the truth of
(a) = (b) makes (a) false, and so on counterclockwise around the circle.

Thus to prove that n statements are equivalent, it suffices to prove n
conditional statements showing each statement implies another, in circular
pattern. But it is not necessary that the pattern be circular. The following
schemes would also do the job.

(@) = b)) = (o

) U
(f) = (¢) <= ()

(a) = B) <= (¢

0
() = (e <= ()

However, a circular pattern results in the fewest number of conditional
statements that must be proved. Whatever the pattern, each conditional
statement can be proved with either direct, contrapositive or contradiction
proof.

Though we shall not do any of these proofs in this text, you are sure to
encounter them in subsequent courses.

7.3 Existence Proofs

Up until this point we have dealt with proving conditional statements
or with statements that can be expressed with two or more conditional
statements. Generally, these conditional statements have form P(x) = Q(x).
(Possibly with more than one variable.) We saw in Section 2.8 that this
can be interpreted as a universally quantified statement V x,P(x) = Q(x).
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Thus, conditional statements are universally quantified statements, so
in proving a conditional statement—whether we use direct, contrapositive
or contradiction proof—we are really proving a universally quantified
statement.

But how would we prove an existentially quantified statement? What
technique would we employ to prove a theorem of the following form?

Jx,R(x)

This statement asserts that there exists some specific object x for which
R(x) is true. To prove Jx,R(x) is true, all we would have to do is find and
display an example of a specific x that makes R(x) true.

Though most theorems and propositions are conditional (or if-and-
only-if) statements, a few have the form 3x,R(x). Such statements are
called existence statements, and theorems that have this form are called
existence theorems. To prove an existence theorem, all you have to do
is provide a particular example that shows it is true. This is often quite
simple. (But not always!) Here are some examples.

Proposition There exists an even prime number.

Proof. Observe that 2 is an even prime number. [ |

Proposition There exists an integer that can be expressed as the sum
of two perfect cubes in two different ways.

Proof. Consider the number 1729. Note that 13 + 123 = 1729 and 93 + 103 =
1729. Thus the number 1729 can be expressed as the sum of two perfect
cubes in two different ways. [ |

Sometimes in the proof of an existence statement, a little verification is
needed to show that the example really does work. For example, the above
proof would be incomplete if we just asserted that 1729 can be written as
a sum of two cubes in two ways without showing how this is possible.

WARNING: Although an example suffices to prove an existence statement,
a mere example never proves a conditional statement.
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Exercises for Chapter 7

Prove the following statements. These exercises are cumulative, covering all
techniques addressed in chapters 4-7.

W 3 O k- W N

16.
17.
18.
19.
20.
21.

. Given an integer a, then a3 +a

. Suppose x € Z. Then x is even if and only if 3x+5 is odd.
. Suppose x € Z. Then x is odd if and only if 3x + 6 is odd.

2 +a is even if and only if a is even.

. Given an integer a, then a? +4a +5 is odd if and only if @ is even.

. An integer a is odd if and only if a? is odd.

. Suppose x,y € R. Then x® +x2y = y2 +xy if and only if y =x2 or y = —x.

. Suppose x,y €R. Then (x + y)? =x2 + y? if and only if x=0 or y=0.

. Suppose a,b € Z. Prove that a =b (mod 10) if and only if a =5 (mod 2) and a =5

(mod 5).

. Suppose a € Z. Prove that 14|a if and only if 7|a and 2|a.
10.
11.
12.
13.
14.
15.

If a €7, then a® =a (mod 3).

Suppose a,b € Z. Prove that (a —3)b? is even if and only if a is odd or b is even.
There exist a positive real number x for which x? < /.

Suppose a,beZ. If a+b is odd, then a2 + b2 is odd.

Suppose a € Z. Then a?|a if and only if a € {-1,0,1}.

Suppose a,b € Z. Prove that a +b is even if and only if @ and b have the same
parity.

Suppose a,b € Z. If ab is odd, then a2+ b? is even.

There is a prime number between 90 and 100.

There is a set X for which Ne X and Nc X.

If neN, then 20 +21 +22 423 424 4.y 2n —9ntl 1,

There exists an n € N for which 11|(2" - 1).

Every entry of Row n of Pascal’s Triangle is odd if and only if n = 2% -1 for
some k €N.



CHAPTER 8

Proofs Involving Sets

tudents taking their first advanced mathematics classes are often sur-
prised by the extensive role that sets play and by the fact that most
of the proofs they encounter are proofs about sets. Perhaps you've already
seen such proofs in your linear algebra course, where a vector space was
defined to be a set of objects (called vectors) that obey certain properties.
Your text proved many things about vector spaces, such as the fact that
the intersection of two vector spaces is also a vector space, and the proofs
used ideas from set theory. As you go deeper into mathematics, you will
encounter more and more ideas, theorems and proofs that involve sets.
The purpose of this chapter is to give you a foundation that will prepare
you for this new outlook.

We will discuss how to show that an object is an element of a set, how
to prove one set is a subset of another, and how to prove two sets are
equal. As you read this chapter, you may need to occasionally refer back
to Chapter 1 to refresh your memory. For your convenience, the main
definitions from Chapter 1 are summarized below. If A and B are sets,
then:

AxB = {@x,y):x€A,yeB}
AUB = {x:(xeA)v(xeB)}
AnB = {x:(xEA)/\(xEB)}
A-B = {x:(xeA)A(x¢B)}

A = U-A
Also, recall that A < B means that every element of A is also an element

of B.
8.1 How to Prove ac A

We will begin with a review of set-builder notation, and then review how
to show that a given object a is an element of some set A.
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Generally, a set A will be expressed in set-builder notation A = {x: P(x)},
where P(x) is some statement (or open sentence) about x. The set A is
understood to have as elements all those things x for which P(x) is true.
For example,

{x:x is an odd integer} ={...-5,-3,-1,1,3,5,...}.

A common variation of this notation is to express a set as A ={xeS:P(x)}.
Here it is understood that A consists of all elements x of the (predetermined)
set S for which P(x) is true. Keep in mind that, depending on context, x
could be any kind of object (integer, ordered pair, set, function, etc.). There
is also nothing special about the particular variable x; any reasonable
symbol x, y, &, etc. would do. Some examples follow.

{neZ:n is odd}
{xel\l:6|x}
{(@,b)€eZxZ:b=a+5}
(Xe2@):1X|=1}

{...=5,-3,-1,1,3,5,...}
{6,12,18,24,30,...}
{
{

..(-2,3),(-1,4),(0,5),(1,6),...}

o= 1h {0} 111 f23. {3} 44 )

Now it should be clear how to prove that an object a belongs to a set
{x:P(x)}. Since {x:P(x)} consists of all things x for which P(x) is true, to
show that a € {x: P(x)} we just need to show that P(a) is true. Likewise, to
show a € {x € S : P(x)}, we need to confirm that a € S and that P(a) is true.
These ideas are summarized below. However, you should not memorize
these methods, you should understand them. With contemplation and
practice, using them becomes natural and intuitive.

How to show a € {x: P(x)} How to show a € {xeS:P(x)}

Show that P(a) is true. 1. Verify that a € S.
2. Show that P(a) is true.

Example 8.1 Let’s investigate elements of A = {x:x €N and 7|x}. This set
has form A = {x: P(x)} where P(x) is the open sentence P(x):(x € N) A(7]x).
Thus 21 € A because P(21) is true. Similarly, 7,14,28,35, etc. are all
elements of A. But 8¢ A (for example) because P(8) is false. Likewise
—14 ¢ A because P(—14) is false.

Example 8.2 Consider the set A ={X € 2(N):|X|=3}. We know that
{4,13,45} € A because {4,13,45} € Z(N) and |{4,13,45}| =3. Also {1,2,3} € A,
{10,854,3} € A, etc. However {1,2,3,4} ¢ A because |{1,2,3,4}| # 3. Further,
{-1,2,3} ¢ A because {-1,2,3} ¢ Z(N).
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Example 8.3 Consider the set B = {(x,y) € Zx Z:x =y (mod 5)}. Notice
(8,23) € B because (8,23)e Z x Z and 8 =23 (mod 5). Likewise, (100,75) € B,
(102,77) € B, etc., but (6,10) ¢ B.

Now suppose n € Z and consider the ordered pair (4n +3,9n —2). Does
this ordered pair belong to B? To answer this, we first observe that
(4n+3,9n-2)e Zx 7. Next, we observe that (4n+3)—(9n-2) = -5n+5 =5(1-n),
80 5|((4n +3)—(9n—2)), which means (4n+3) = (9n—2) (mod 5). Therefore we
have established that (4n + 3,9n — 2) meets the requirements for belonging
to B, so (4n+3,9n—2) € B for every ne Z.

Example 8.4 This illustrates another common way of defining a set.
Consider the set C = {3x3 +2:x € Z}. Elements of this set consist of all the
values 3x% +2 where x is an integer. Thus —22 € C because —22 = 3(-2)% + 2.
Also you can confirm —1€C and 5€C, etc, as well as 0¢ C and % ¢ C, etc.

8.2 How to Prove AcB

In this course (and more importantly, beyond it) you will encounter many
circumstances where it is necessary to prove that one set is a subset of an-
other. This section explains how to do this. The methods we discuss should
improve your skills in both writing your own proofs and in comprehending
the proofs that you read.

Recall (Definition 1.3) that if A and B are sets, then A < B means that
every element of A is also an element of B. In other words, it means if
a €A, then a € B. Therefore to prove that A < B, we just need to prove that
the conditional statement

“Ifac A, then acB.”

is true. This can be proved directly, by assuming a € A and deducing a € B.
The contrapositive approach is another option: assume a ¢ B and deduce
a ¢ A. Each of these two approaches is outlined below.

How to Prove AcB How to Prove AcB
(Direct approach) (Contrapositive approach)
Proof. Suppose a€A. Proof. Suppose a ¢ B.
Therefore a € B. Therefore a ¢ A.
Thus a € A implies a € B, Thus a ¢ B implies a ¢ A,
so it follows that AcB. = so it follows that AcB. N
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In practice, the direct approach usually results in the most straight-
forward and easy proof, though occasionally the contrapositive is the
most expedient. (You can even prove A < B by contradiction: assume
(a € A)A(a ¢ B), and deduce a contradiction.) The remainder of this section
consists of examples with occasional commentary. Unless stated otherwise,
we will use the direct approach in all proofs; pay special attention to how
the above outline for the direct approach is used.

Example 8.5 Prove that {x€Z:18|x} c{xeZ:6]|x}.

Proof. Suppose a € {x€Z:18|x}.
This means that a € Z and 18]a.
By definition of divisibility, there is an integer ¢ for which a = 18ec.
Consequently a = 6(3¢), and from this we deduce that 6|a.
Therefore a is one of the integers that 6 divides, so a € {xe€Z:6|x}.

We’ve shown a € {x€Z:18|x} implies a € {n € Z:6|x}, so it follows that
{x€ez:18|x} c{xeZ:6|x}. [

Example 8.6 Prove that {x(—:Z:le}ﬂ{xEZ:9|x}§{x€Z:6|x}.

Proof. Suppose a€{xeZ:2|x}n{xeZ:9|x}.
By definition of intersection, this means ae€{xe€Z:2|x} and a € {xeZ:9|x}.
Since a € {x € Z:2|x} we know 2|a, so a =2c¢ for some c € Z. Thus a is even.
Since a € {x€Z:9|x} we know 9|a, so a =9d for some d € Z.
As a is even, a = 9d implies d is even. (Otherwise a = 9d would be odd.)
Then d = 2e for some integer ¢, and we have a =9d = 9(2¢) = 6(3e).
From a = 6(3e), we conclude 6|a, and this means a€ {x€Z:6|x}.

We have shown that a e {xeZ:2|x}n{x€Z:9|x} implies a € {x€Z:6|x},
so it follows that {er:ZIx}m{er:9|x}§{x€Z:6|x}. [ ]

Example 8.7 Show {(x,y)€ ZxZ:x=y(mod 6)} < {(x,y) € ZxZ :x = y (mod 3)}.

Proof. Suppose (a,b) € {(x,y) € Zx Z :x =y (mod 6)}.
This means (a,b)€Zx Z and a =b (mod 6).
Consequently 6|(a —b), so a — b = 6¢ for some integer c.
It follows that a — b = 3(2¢), and this means 3|(a —b), so a =b (mod 3).
Thus (a,b) € {(x,y)€ZxZ:x = y (mod 3)}.

We’ve now seen that (a,b) € {(x,y) € Zx Z:x = y (mod 6)} implies (a,b) €
{(x,)€ZxZ:x=y(mod 3)}, so it follows that {(x,y) € Zx Z:x =y (mod 6)} =
{(x,)€Z*xZ :x=y(mod 3)}. [ ]
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Some statements involving subsets are transparent enough that we
often accept (and use) them without proof. For example, if A and B are any
sets, then it’s very easy to confirm AnBc A. (Reason: Suppose x€ AnB.
Then x € A and x € B by definition of intersection, so in particular x€ A.
Thus x€ AnB implies x€ A, so AnBc A.) Other statements of this nature
include AcAuB and A-Bc A, as well as conditional statements such as
(AcB)AB<C))=(AcC) and (X cA)= (X cAuUB). Our point of view in
this text is that we do not need to prove such obvious statements unless we
are explicitly asked to do so in an exercise. (Still, you should do some quick
mental proofs to convince yourself that the above statements are true. If
you don’t see that AnB < A is true but that A € AnB is not necessarily
true, then you need to spend more time on this topic.)

The next example will show that if A and B are sets, then #(A)u Z(B)
Z(A uUB). Before beginning our proof, let’s look at an example to see if
this statement really makes sense. Suppose A ={1,2} and B ={2,3}. Then

12,11} {2},{1,2}} U {2, {2}, {3},12,3}}
{2,{1}.{2},{3},{1.2},{2,3}}.

Also Z(AuB) = 2({1,2,3}) = {®,{1},{2},{3},{1,2},{2,3},{1,3},{1,2,3}}. Thus,
even though Z(A)u Z(B) # #(AUB), it is true that Z(A)u Z(B) < #(AUB)
for this particular A and B. Now let’s prove Z(A)u #(B) < #(A UB) no
matter what sets A and B are.

P(A)u Z(B)

Example 8.8 Prove that if A and B are sets, then #(A)u Z(B) < Z(AUB).

Proof. Suppose X € Z(A)u Z(B).
By definition of union, this means X € #(A) or X € #(B).
Therefore X < A or X < B (by definition of power sets). We consider cases.
Case 1. Suppose X cA. Then X c AuUB, and this means X € (A UB).
Case 2. Suppose X cB. Then X € AuB, and this means X € (A UB).
(We do not need to consider the case where X € A and X < B because that
is taken care of by either of cases 1 and 2.) The above cases show that
X e ZAUB).

Thus we’ve shown that X € #2(A)u £(B) implies X € (A uB), and this
completes the proof that Z(A)u Z(B)c #(A UB). [ ]

In our next example, we prove a conditional statement. Direct proof is
used, and in the process we use our new technique for showing A < B.
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Example 8.9 Suppose A and B are sets. If 22(A)<c #(B), then A cB.

Proof. We use direct proof. Assume #(A)<c Z(B).

Based on this assumption, we must now show that A < B.

To show A < B, suppose that a€ A.

Then the one-element set {a} is a subset of A, so {a} € 2(A).

But then, since #(A) < Z(B), it follows that {a} € Z(B).

This means that {a} =B, hence a €B.

We’ve shown that a € A implies a € B, so therefore A € B. [ ]

8.3 How to Prove A =B

In proofs it is often necessary to show that two sets are equal. There is a
standard way of doing this. Suppose we want to show A = B. If we show
A B, then every element of A is also in B, but there is still a possibility
that B could have some elements that are not in A, so we can’t conclude
A =B. But ifin addition we also show B < A, then B can’t contain anything
that is not in A, so A = B. This is the standard procedure for proving A = B:
prove both AcB and BS A.

How to Prove A =B

Proof.
[Prove that A cB.]
[Prove that B A.]

Therefore, since AcB and BS A,
it follows that A = B. [ |

Example 8.10 Prove that {n(—:Z:35|n}={n€Z:5|n}ﬂ{n€Z:7|n}.

Proof. First we show {n€Z:35|n}c{nez:5|n}n{nez:7|n}. Suppose
a€{ne€z:35|n}. This means 35|a, so a = 35¢ for some c € Z. Thus a =5(7c)
and a = 7(5¢). From a =5(7¢) it follows that 5|a, so ae{ne€Z:5|n}. From
a =7(5¢) it follows that 7|a, which means a € {n€Z:7|n}. As a belongs
to both {ne€Z:5|n} and {nezZ:7|n}, we get a€ {nezZ:5/n}n{nez:7n}.
Thus we’ve shown that {n€Z:35|n}c{nez:5|n}n{nez:7|n}.

Next we show {ne€Z:5|n}n{neZ:7In} c{nez:35|n}. Suppose that
a€{neZ:5|n}n{nez:7|n}. By definition of intersection, this means that
a€{nez:5|n} and a€{neZ:7|n}. Therefore it follows that 5|a and 7|a.
By definition of divisibility, there are integers ¢ and d with a =5c and a = 7d.
Then a has both 5 and 7 as prime factors, so the prime factorization of a
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must include factors of 5 and 7. Hence 5-7 = 35 divides a, soa € {n € Z:35|n}.
We’ve now shown that {n€Z:5|n}n{nez:7In} c{nez:35|n}.

At this point we’ve shown that {ne€Z:35|n}c{nez:5|n}n{nez:7|n}
and {neZ:5|n}n{nez:7In} c{nez:35|n}, so we've proved {n € Z:35|n} =
{nez:5|n}n{nez:7|n}. [

You know from algebra that if ¢ #0 and ac = bc, then a =b. The next
example shows that an analogous statement holds for sets A,B and C. The
example asks us to prove a conditional statement. We will prove it with
direct proof. In carrying out the process of direct proof, we will have to
use the new techniques from this section.

Example 8.11 Suppose A, B, and C are sets, and C # ¢. Prove that if
AxC=BxC, then A=B.

Proof. Suppose A xC =B xC. We must now show A =B.

First we will show A € B. Suppose a € A. Since C # @, there exists
an element ¢ € C. Thus, since a € A and c € C, we have (a,c) € A xC, by
definition of the Cartesian product. But then, since A xC =B x C, it follows
that (a,c) € B xC. Again by definition of the Cartesian product, it follows
that a € B. We have shown a € A implies a € B, so A <B.

Next we show B< A. We use the same argument as above, with the
roles of A and B reversed. Suppose a € B. Since C # @, there exists an
element c € C. Thus, since a € B and ce€ C, we have (a,c) € BxC. But then,
since BxC =A xC, we have (a,c)€ A xC. It follows that a € A. We have
shown a € B implies a € A, so BS A.

The previous two paragraphs have shown AcB and BcA,so A=B. In
summary, we have shown that if A xC =B xC, then A =B. This completes
the proof. [ |

Now we’ll look at another way that set operations are similar to oper-
ations on numbers. From algebra you are familiar with the distributive
property a-(b+c)=a-b+a-c. Replace the numbers a,b,c with sets A,B,C,
and replace - with x and + with n. We get Ax(BnC)=(AxB)n(A xC).
This statement turns out to be true, as we now prove.

Example 8.12 Given sets A, B, and C, prove A x(BNnC)=(AxB)n(A xC).

Proof. First we will show that A x(BNnC)<(A xB)n(A xC).

Suppose (a,b)e A x (BN C).

By definition of the Cartesian product, this means a€ A and be BnC.
By definition of intersection, it follows that b€ B and b€ C.
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Thus, since a € A and b € B, it follows that (a,b) € A x B (by definition of x.)
Also, since a € A and b € C, it follows that (a,b) € A x C (by definition of x.)
Now we have (a,b)e AxB and (a,b)e AxC, so (a,b)e (A xB)n(A xC).
We’ve shown that (a,b) € A x (BN C) implies (a,b) € (A x B)n(A xC) so we
have Ax(BNC)c(AxB)n(A xC).

Next we will show that (AxB)n(AxC)cAx(BnC(C).
Suppose (a,b) € (A xB)n(A xC).
By definition of intersection, this means (a,b)€ A xB and (a,b)e A x C.
By definition of the Cartesian product, (a,b)€ A x B means a€ A and b € B.
By definition of the Cartesian product, (a,b)€ A xC means a€ A and b€ C.
We now have beB and b€ C, so b€ BnC, by definition of intersection.
Thus we've deduced that a€ A and beBnC, so (a,b)e Ax(BnC).
In summary, we’ve shown that (a,b) € (A xB)n(A xC) implies (a,b) € Ax(BNC)
so we have (AxB)N(AxC)c A x(BnC(C).

The previous two paragraphs show that Ax(BNnC)< (A xB)n(AxC) and
(AxB)N(AxC)c Ax(BnCQC), so it follows that (AxB)N(AxC)=Ax(BnC). A

Occasionally you can prove two sets are equal by working out a series of
equalities leading from one set to the other. This is analogous to showing
two algebraic expressions are equal by manipulating one until you obtain
the other. We illustrate this in the following example, which gives an
alternate solution to the previous example. You are cautioned that this
approach is sometimes difficult to apply, but when it works it can shorten
a proof dramatically.

Before beginning the example, a note is in order. Notice that any
statement P is logically equivalent to P AP. (Write out a truth table if you
are in doubt.) At one point in the following example we will replace the
expression x € A with the logically equivalent statement (x € A)A(x € A).

Example 8.13 Given sets A, B, and C, prove A x(BNnC)=(AxB)n(A xC).

Proof. Just observe the following sequence of equalities.

Ax(BnC) ={xy):(xeA)A(yeBnC)} (def. of x)
={(x,y):(x€ A)A(yeB)A(y e C)} (def. of N)
= {(x,y):(x€ A)A(xe A)AN(yeB)A(y e C)} (P=PAP)
= {(x,y):(x€e A)A(yeB)A(x e A)A(y e O)} (rearrange)
= {(x,y):(x€e A)A(yeB)} n{(x,y) : (xe A)A(yeC)} (def. of N)
=(AxB)n(AxC) (def. of x)

The proof is complete. [ ]
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The equation A x(BNC)=(A xB)n(A xC) just obtained is a fundamental
law that you may actually use fairly often as you continue with mathematics.
Some similar equations are listed below. Each of these can be proved with
this section’s techniques, and the exercises will ask that you do so.

AnNB=AUB
AUB=ANB
ANnBuUuC)=(AnB)UAnC)
AUuBnC)=(AuB)Nn(AuC)
Ax(BuUC)=(AxB)U(AxC)
AxBnC)=(AxB)Nn(AxC)

} DeMorgan’s laws for sets
} Distributive laws for sets

} Distributive laws for sets

It is very good practice to prove these equations. Depending on your
learning style, it is probably not necessary to commit them to memory.
But don’t forget them entirely. They may well be useful later in your
mathematical education. If so, you can look them up or re-derive them on
the spot. If you go on to study mathematics deeply, you will at some point
realize that you've internalized them without even being cognizant of it.

8.4 Examples: Perfect Numbers

Sometimes it takes a good bit of work and creativity to show that one set
is a subset of another or that they are equal. We illustrate this now with
examples from number theory involving what are called perfect numbers.
Even though this topic is quite old, dating back more than two-thousand
years, it leads to some questions that are unanswered even today.

The problem involves adding up the positive divisors of a natural
number. To begin the discussion, consider the number 12. If we add up the
positive divisors of 12 that are less than 12, we obtain 1+2+3+4+6 =16,
which is greater than 12. Doing the same thing for 15, we get 1+3+5=9
which is less than 15. For the most part, given a natural number p, the
sum of its positive divisors less than itself will either be greater than p
or less than p. But occasionally the divisors add up to exactly p. If this
happens, then p is said to be a perfect number.

Definition 8.1 A number p € N is perfect if it equals the sum of its
positive divisors less than itself. Some examples follow.

* The number 6 is perfect since 6=1+2+ 3.

* The number 28 is perfect since 28=1+2+4+7+14.

* The number 496 is perfect since 496=1+2+4+