Algorithms: An Introduction

.‘r

009,0,0,°

VeVo%e Ve
' L}
® Ie
A ’

.7

L)
A

Algorithm’ is a distortion of Al-Khawarizmi,
a Persian mathematician

S A AT
0%,
o
N N N

A

ST
n
'2%2%2°

Section 3.1 of Rosen
Spring 2011
CSCE 235 Introduction to Discrete Structures
Course web-page: cse.unl.edu/~cse235
Questions: cse235@cse.unl.edu

Outline

* |Introduction & definition
e Algorithms categories & types
* Pseudo-code
* Designing an algorithm
— Example: MAX

* Greedy Algorithms
— CHANGE

CSCE 235 Algorithms: An Introduction

Computer Science is About Problem Solving

A Problem is specified by

1. The givens (a formulation)
* Aset of objects
* Relations between them
2. The query
* The information one wants to extract from the formulation, the question to answer

Real World — Computing World

Objects represented by... data Structures, ADTs, Classes
Relations implemented with... relations & functions (e.g., predicates)
Actions Implemented with... algorithms: a sequence of instructions

 An algorithm is a method or procedure that solves instances of a problem

CSCE 235 Algorithms: An Introduction 3

Algorithms: Formal Definition

Definition: An algorithm is a sequence of unambiguous
instructions for solving a problem.

Properties of an algorithm
— Finite: the algorithm must eventually terminate
— Complete: Always give a solution when one exists
— Correct (sound): Always give a correct solution

For an algorithm to be an acceptable solution to a problem, it
must also be effective. That is, it must give a solution in a
‘reasonable’ amount of time

Efficient= runs in polynomial time. Thus, effective= efficient
There can be many algorithms to solve the same problem

CSCE 235 Algorithms: An Introduction

Outline

* Algorithms categories & types

CSCE 235 Algorithms: An Introduction

Algorithms: General Techniques

* There are many broad categories of algorithms
— Deterministic versus Randomized (e.g., Monte-Carlo)
— Exact versus Approximation

— Sequential/serial versus Parallel, etc.

 Some general styles of algorithms include

— Brute force (enumerative techniqgues, exhaustive search)
— Divide & Conquer

— Transform & Conquer (reformulation)

— Greedy Techniques

CSCE 235 Algorithms: An Introduction

Outline

e Pseudo-code

CSCE 235 Algorithms: An Introduction

Good Pseudo-Code: Example

INTERSECTION
Input: Two finite sets A, B
Output: A finite set CsuchthatC=AMNB
C<—J
If |[A|>]|B]
Then SWAP(A,B)
End
For every x © A Do
If xEB
Then C < CU {x}
End
End
10. ReturnC

O 00 N O U W R

CSCE 235 Algorithms: An Introduction

UNION(C,{x})

Algorithms: Pseudo-Code

e Algorithms are usually presented using pseudo-code

* Bad pseudo-code
— gives too many details or
— is too implementation specific (i.e., actual C++ or Java code or giving
every step of a sub-process such as set union)
* Good pseudo-code
— Is a balance between clarity and detail
— Abstracts the algorithm
— Makes good use of mathematical notation
— |s easy to read and

— Facilitates implementation (reproducible, does not hide away
important information)

CSCE 235 Algorithms: An Introduction

Writing Pseudo-Code: Advice

Input/output must properly defined
All your variables must be properly initialized, introduced
Variables are instantiated, assigned using <

All ‘commands' (while, if, repeat, begin, end) bold face \bf
Fori<— 1tonDo

All functions in small caps UNION(s,t) \sc

All constants in courier: pi < 3.14 \tt

All variables in italic: temperature <— 78 (\it, \em)

LaTeX: Several algorithm formatting packages exist on WWW

CSCE 235 Algorithms: An Introduction 10

Outline

e Designing an algorithm
— Example: MAX

CSCE 235 Algorithms: An Introduction

11

Designing an Algorithm

* A general approach to designing algorithms is as follows

CSCE 235

Understanding the problem, assess its difficulty

Choose an approach (e.g., exact/approximate, deterministic/
probabilistic)

(Choose appropriate data structures)
Choose a strategy

Prove

1. Termination

2. Completeness

3. Correctness/soundness

Evaluate complexity
Implement and test it
Compare to other known approach and algorithms

Algorithms: An Introduction

12

Algorithm Example: MAX

* When designing an algorithm, we usually give a
formal statement about the problem to solve

* Problem
— Given: a set A={a,a,,...,a,} of integers
— Question: find the index i of the maximum integer a.
* A straightforward idea is
— Simply store an initial maximum, say a,
— Compare the stored maximum to every other integer in A

— Update the stored maximum if a new maximum is ever
encountered

CSCE 235 Algorithms: An Introduction

13

Pseudo-code of Max

MAX
Input: A finite set A={a,,0,,...,a,} of integers
Output: The largest element in the set

. temp < a,

. For i=2tonDo

1

2

3 If a,> temp

4. Then temp < a,
5. End

6. End

/. Return temp

CSCE 235 Algorithms: An Introduction 14

Algorithms: Other Examples

* Check Bubble Sort and Insertion Sort in your
textbooks

* ... which you should have seen ad nauseum in
CSE 155 and CSE 156

* And which you will see again in CSE 310
e Let us know if you have any questions

CSCE 235 Algorithms: An Introduction 15

Outline

* Greedy Algorithms
— CHANGE

CSCE 235 Algorithms: An Introduction

16

Greedy Algorithms

* In many problems, we wish to not only find a solution, but to
find the best or optimal solution

* Asimple technique that works for some optimization
problems is called the greedy technique

* Asthe name suggests, we solve a problem by being greedy:
— Choose what appears now to be the best choice
— Choose the most immediate best solution (i.e., think locally)

* Greedy algorithms

— Work well on some (simple) algorithms

— Usually they are not guaranteed to produce the best globally optimal
solution

CSCE 235 Algorithms: An Introduction 17

Change-Making Problem

* We want to give change to a customer but we
want to minimize the number of total coins we

give them

* Problem

— Given: An integer n an a set of coin denominations
(cy,Cy,...,C,) With ¢, >C,>...>C,
— Query: Find a set of coins d,,d,,...,d, such that

3._.*d.=nand kis minimized

CSCE 235 Algorithms: An Introduction 18

Greedy Algorithm: CHANGE

CHANGE
Input: An integer n and a set of coin denominations {c,c,,...,C,}
with ¢;>¢,> ... >,
Output: A set of coins d,,d,,...,d, such that X._.% d.= n and k is minimized
1. C<= D
2. For i=1torDo
3. While n= ¢, Do
4 C<—CU{c}
5. n<—n-c
6 End
7. ReturnC

CSCE 235 Algorithms: An Introduction 19

CHANGE: Analysis (1)

* Will the algorithm always produce an optimal
answer?

* Example

— Consider a coinage system where ¢,=20, c,=15, ¢;=7, ¢,=1
— We want to give 22 ‘cents’ in change

 What is the output of the algorithm?

* Isit optimal?

* Itis not optimal because it would give us two c4 and one c1 (3
coins). The optimal change is one c2 and one c3 (2 coins)

CSCE 235 Algorithms: An Introduction 20

CHANGE: Analysis (2)

* What about the US currency system: is the
algorithm correct in this case?

* Yes, in fact it is. We can prove it by
contradiction.

* For simplicity, let us consider
c,=25, ¢,=10, ¢;=5, ¢,=1

CSCE 235 Algorithms: An Introduction

21

Optimality of CHANGE (1)

* LetC={d,d,,..,d.}be the solution given by the greedy algorithm for some
integer n.

* By way of contradiction, assume there is a better solution C’'={d’,,d’,,...,d"}}
with I<k

* Consider the case of quarters. Say there are q quarters in C and q’in C’.

1. If g’>q, the greedy algorithm would have used q’ by construction. Thus, it is
impossible that the greedy uses g<d’.

2. Since the greedy algorithms uses as many quarters as possible, n=q(25)+r,

where r<25. If g’<q, then, n=q’(25)+r’ where r’'=25. C’ will have to use more
smaller coins to make up for the large r’. Thus C’ is not the optimal solution.

3. If g=d/, then we continue the argument on the smaller denomination (e.g.,
dimes). Eventually, we reach a contradiction.

* Thus, C=C’ is our optimal solution

CSCE 235 Algorithms: An Introduction 22

Optimality of CHANGE (2)

e But, how about the previous counterexample? Why (and
where) does this proof?

 We need the following lemma:

If n is a positive integer, then n cents in change using quarters,
dimes, nickels, and pennies using the fewest coins possible

— Has at most two dimes,

— Has at most one nickel

— Has at most four pennies, and

— Cannot have two dimes and a nickel

The amount of change in dimes, nickels, and pennies cannot
exceed 24 cents

CSCE 235 Algorithms: An Introduction 23

Greedy Algorithm: Another Example

* Check the problem of Scenario |, page 8 in the slides
IntroductiontoCSE235.ppt

 We discussed then (remember?) a greedy algorithm
for accommodating the maximum number of
customers. The algorithm

— terminates, is complete, sound, and satisfies the maximum
number of customers (finds an optimal solution)

— runs in time linear in the number of customers

CSCE 235 Algorithms: An Introduction 24

Summary

* |Introduction & definition
e Algorithms categories & types
* Pseudo-code
* Designing an algorithm
— Example: MAX

* Greedy Algorithms
— Example: CHANGE

CSCE 235 Algorithms: An Introduction

25

