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Intelligent Agents

1. Agents and environments2. Rationality3. PEASSpe
ifying the task environment:Performan
e measure, Environment, A
tuators, Sensors4. Types of environments5. Types of Intelligent Agents
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AgentAnything that 





per
eives its environment through sensorsa
ts upon its environment through a
tuators

Agents in
lude: Humans, robots, software, et
. Sensors? A
tuators?The agent fun
tion maps from per
ept sequen
es to a
tions:

f : P∗ → AThe agent program runs on the physi
al ar
hite
ture toprodu
e f
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Va
uum-
leaner world

A B

Per
epts: lo
ations and 
ontents, e.g., [A, dirty]A
tions: Left, Right, Suck, NoOp

B.Y.Choueiry
4

Instru
tor'snotes#4
January20,2010



'&

$%
A Va
uum-
leaner AgentPer
ept sequen
e A
tion

[A, Clean] Right
[A, Dirty] Su
k
[B, Clean] Left
[B, Dirty] Su
k
[A, Clean],[A, Clean] Right...

[A, Clean],[A, Clean],[A, Clean] Right...Fun
tion Re�ex-Va

uum-Agent ([location, status]]) returns an a
tionif status = Dirty then return Suckelse if location = A then return Rightelse if location = B then return Left
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Goal of AIBuild rational agents.Rational = ?

What is �rational� depends on:1. Performan
e measures (how, when)2. The agents' prior knowledge of the environment3. The a
tions the agent 
an perform4. Per
ept sequen
e to date (history): everything agent hasper
eived so far

B.Y.Choueiry
6

Instru
tor'snotes#4
January20,2010



'&

$%
Performan
e meaure

Fixed performan
e measure evaluates the environmentsequen
e

• one point per square 
leaned up in time t

• point per 
lean square per time step, minus one per move?

• penalize for > k dirty squares?
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RationalityA rational agent 
hooses whi
hever a
tion maximizes theexpe
ted value of the performan
e measure given the per
eptsequen
e to date

Rational 6= omnis
ient, 
lairvoyantRationality maximizes expe
ted performan
ePerfe
tion maximizes a
tual performan
e

Rational =⇒ exploration, learning, autonomy

After a su�
ient experien
e of its environment, behavior of arational agents be
omes e�e
tively independent of prior knowledge.
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PEAS

To design a rational agent, we must spe
ify the task environment

Performan
e measure?Environment?A
tuators?Sensors?
Consider, e.g., the task of designing an automated taxi..
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PEAS: Automated taxi

Performan
e measure: safety, destination, pro�ts, legality,
omfort, . . .Environment: US urban streets, freeways, tra�
, pedestrians,stray animals, weather, . . .A
tuators: steering, a

elerator, brake, horn, speaker/display, . . .Sensors: video, a

elerometers, gauges, engine sensors, keyboard,GPS, . . .
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Environment (1)

1. Fully Observable vs. Partially Observable2. Deterministi
 vs. sto
hasti
3. Episodi
 vs. sequential4. Stati
 vs. dynami
5. Dis
rete vs. 
ontinuous6. Single agent vs. multiagent
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Environment (2)

Fully/Partially Observable: sensors 
an dete
t all aspe
ts ofthe worldE�e
tively fully observable: relevant aspe
tsDeterministi
 vs. sto
hasti
: from the agent's view pointNext state determined by 
urrent state and agents' a
tionsPartially observable + deterministi
 appears sto
hasti
Episodi
 vs. sequential: Agent's experien
e divided into atomi
episodes; subsequent episodes do not depend on a
tions inprevious episodes
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Environment (3)

Stati
 vs. dynami
:Dynami
: Environment 
hanges while agent is deliberatingSemidynami
: environment stati
, performan
e s
ores dynami
Dis
rete vs. 
ontinuous: Finite number of pre
epts, a
tions

Single agent vs. multiagent: B's behavior maximizes aperforman
e measure whose value depends on A's behavior.Cooperative, 
ompetitive, 
ommuni
ation.Chess? Taxi driving? hardest 
ase?
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Environment (4)Hardest 
ase: patially observable, sto
hasti
, sequential, dynami
,
ontinuous, and multiagentSolitaire Ba
kgammon Internet shopping TaxiObservableDeterministi
Episodi
Stati
Dis
reteSingle-agentAnswers depend on how you de�ne/interpret the 
aseEpisodi
: 
hess tournament
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Environment typesSolitaire Ba
kgammon Internet shopping TaxiObservable Yes Yes No NoDeterministi
 Yes No Partly NoEpisodi
 No No No NoStati
 Yes Semi Semi NoDis
rete Yes Yes Yes NoSingle-agent Yes No Yes No(ex
ept au
tions)The environment type largely determines the agent designThe real world is (of 
ourse) partially observable, sto
hasti
,sequential, dynami
, 
ontinuous, multi-agent
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Types of AgentsFour, in order of in
reasing generality:1. Simple re�ex agents2. Simple re�ex agents with state3. Goal-based agents4. Utility-based agents5. Learning agentsAll these 
an be turned into learning agents.
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Simple re�ex agents

• Simple look-up table, mapping per
epts to a
tions, is out of question(too large, too expensive to build)

• Many situations 
an be summarized by 
ondition-a
tion rules (humans:learned responses, innate re�exes)
Agent

E
nvironm

ent
Sensors

What action I
should do nowCondition-action rules

Actuators

What the world
is like now

Re
tangles: agent's internal state Ovals: ba
kground informationImplementation: easy; Appli
ability: narrow

B.Y.Choueiry
17

Instru
tor'snotes#4
January20,2010



'&

$%
Simple re�ex agents with state

• Sensory information alone is not su�
ient
• Need to keep tra
k of how the world evolves(evolution: independently of agent, or 
aused by agent's a
tions)

Agent

E
nvironm

ent

Sensors

State

How the world evolves

What my actions do

Condition-action rules

Actuators

What the world
is like now

What action I
should do now

How the world evolved: model-based agent
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Goal-based agents

• State & a
tions don't tell where to go

• Need goals to build sequen
es of a
tions (planning)

Agent

E
nvironm

ent
Sensors

What action I
should do now

State

How the world evolves

What my actions do

Actuators

What the world
is like now

What it will be like
  if I do action A

Goals

Goal-based: uses the same rules for di�erent goalsRe�ex: will need a 
omplete set of rules for ea
h goal
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Utility-based agents

• Several a
tion sequen
es to a
hieve some goal (binary pro
ess)
• Need to sele
t among a
tions & sequen
es. Preferen
es.
• Utility: State → real number (express degree of satisfa
tion, spe
ifytrade-o�s between 
on�i
ting goal)

Agent

E
nvironm

ent

Sensors

How happy I will be
in such a state

State

How the world evolves

What my actions do

Utility

Actuators




What action I
should do now

What it will be like
if I do action A

What the world
is like now
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Learning agentsAgent operates in an initially unknown environment, and be
omesmore 
ompetent than its initial knowledge alone might allow

Performance standard

Agent

E
nvironm

ent

Sensors

Performance
element

changes

knowledge
learning
  goals

Problem
generator 

feedback

  Learning  
element

Critic

Actuators




Learning: pro
ess of modi�
ation of ea
h 
omponent of the agentto bring the 
omponents into 
loser agreement with the availablefeedba
k information, thus improving overall performan
e of theagent.
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