Laronoyp X

-

Title: Informed Search Methods
Required reading: AIMA, Chapter 3 (Sections 3.5, 3.6)
LWH: Chapters 6, 10, 13 and 14.

- Introduction to Artificial Intelligence
CSCE 476-876, Spring 2010
URL: www.cse.unl.edu/"choueiry/S10-476-876
mg Berthe Y. Choueiry (Shu-we-ri)
78 choueiry@cse.unl.edu, (402)472-5444
4w
os]
<
:
¢
Outline
e Categorization of search techniques
e Ordered search (search with an evaluation function)
o e Best-first search:
(1) Greedy search (2) A*
e Admissible heuristic functions:
how to compare them?
. how to generate them?
gé’ how to combine them?

Laronoyp X

0T0Z ‘0T Areniqeyq
L7£ so30U §,I1030NI3SUT

4 N

Types of Search (I)

1- Uninformed vs. informed

2- Systematic/constructive vs. iterative improvement

Uninformed :
use only information available in problem definition,

no idea about distance to goal

— can be incredibly ineffective in practice

Heuristic :
exploits some knowledge of the domain
also useful for solving optimization problems

- /

Laronoyp X

0T0Z ‘0T Areniqeyq
L7£ so30U §,I1030NI3SUT

~

Types of Search (II)

Systematic, exhaustive, constructive search:

a partial solution is incrementally extended into global solution

Partial solution =
sequence of transitions between states

Global solution =
Solution from the initial state to the goal state

Uninf d
Examples: rorme

Informed (heuristic): Greedy search, A*

— Returns the path; solution = path

- /

Laronoyp X

0T0Z ‘0T Areniqeyq
L7£ so30U §,I1030NI3SUT

4 N

Types of Search (III)

Iterative improvement:
A state is gradually modified and evaluated until
reaching an (acceptable) optimum

— We don’t care about the path, we care about ‘quality’ of state
— Returns a state; a solution = good quality state

— Necessarily an informed search

Hill climbing
Examples (informed):{ Simulated Annealing (physics), Taboo search

Genetic algorithms (biology)

- /

Laronoyp X

0T0Z ‘0T Areniqeyq
L7£ so30U §,I1030NI3SUT

4 N

Ordered search

e Strategies for systematic search are generated by choosing which
node from the fringe to expand first

e The node to expand is chosen by an evaluation function,

expressing ‘desirability’ — ordered search

e When nodes in queue are sorted according to their decreasing
values by the evaluation function — best-first search

e Warning: ‘best’ is actually ‘seemingly-best’ given the evaluation
function. Not always best (otherwise, we could march directly to
the goal!)

- /

Laronoyp X

0T0Z ‘0T Areniqeyq
L7£ so30U §,I1030NI3SUT

-

_

Evaluates cost from

e Example: uniform-cost search!

e How about the cost to the goal?

Search using an evaluation function

What is the evaluation function?

h(n) = estimated cost of the cheapest

h(n) would help focusing search

path from the state at node n to a goal state

Laronoyp X

0T0Z ‘0T Areniqeyq
L7£ so30U §,I1030NI3SUT

-

Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
las

L ugoj

Cost to the goal

366
0
160
242
161
176
77
151
226
244

M ehadia
Neamt

Oradea

Pitesti

Rimnicu Vilcea
Sibiu
Timisoara

Ur ziceni

Vadui

Zerind

This information is not part of the problem description

241

Laronoyp X

0T0Z ‘0T Areniqeyq
L7£ so30U §,I1030NI3SUT

4 N

Best-first search

1. Greedy search chooses the node n closest to the goal

such as h(n) is minimal

2. A* search chooses the least-cost solution
g(n): cost from root to a given node n
solution cost f(n) < +

h(n): cost from the node n to the goal node

such as f(n) = g(n) + h(n) is minimal

- /

Laronoyp X

0T

0T0Z ‘0T Areniqeyq
L7£ so30U §,1030NI3SUT

4 N

Greedy search

— First expand the node whose state is ‘closest’ to the goal!

— Minimize h(n)

function BEST-FIRST-SEARCH(problem, EVAL-FN) returns a solution sequence
inputs: problem, aproblem
Eval-Fn, an evaluation function

Queueing-Fn «+ afunction that orders nodesby EVAL-FN
return GENERAL-SEARCH(problem, Queueing-Fn)

— Usually, cost of reaching a goal may be estimated,
not determined exactly

— If state at n is goal, h(n)= ?

— How to choose h(n)? Problem specific! Heuristic!

- /

Laronoyp X

-

Greedy search: Romania

hsip(n) = straight-line distance between n and goal location

= 75
= Arad]
118
Arad 366 Mehadia 241
Bucharest 0 Neamt 234
Craiova 160 Oradea 380
Dobreta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
i L Hirsova Fagaras 176 Sibiu 253
Giurgiu 77 Timisoara 329
5 Hirsova 151 Urziceni 80
@ lasi 226 Vaslui 199
g z d Giurgiu Eforie Lugoj 244 Zerind 3
g
£ 0
ST
g
58
]
N ©
24 \ /
o~
v
=<
g
o
c . .
& Greedy search: Trip from Arad to Bucharest
g
(a) Theinitial state
366
(b) After expanding Arad
253 329 374
—
[\
=
1]
o
-5
e
£ 0
5
<@ . .
Ay ... Greedy search! quick, but not optimal!
P o+
v &
23
o~

0T0Z ‘0T Areniqeyq

Laronoyp X

€l

L7+ S030U §,1030NIsU]

-

Greedy search: Problems

. False starts: Neamt is a dead-end
From Iasi to Fagaras?

Looping

Arad 366 Mehadia
Bucharest 0 Neamt
Craiova 160 Oradea
Dobreta 242 Pitesti
Eforie 161 Rimnicu Vilcea
< Hirsova Fagaras 176 Sibiu

Giurgiu 77 Timisoara
Hirsova 151 Urziceni
lasi 226 Vaslui

M Giurgiu Eforie Lugoj 244 Zerind

24
23
38

19
25
32

19
37

/

P OOOWWOORRr

0T0Z ‘0T Areniqeyq

Laronoyp X

4!

L7+ S930U §,1030NIsU]

Greedy search: Properties

— Like depth-first, tends to follow a single path to the goal

Not let
— Like depth-first OF CompIee

Not optimal
— Time complexity: O(b™), m maximum depth
— Space complexity: O(b"™) retains all nodes in memory

— Good h function (considerably) reduces space and time
but h functions are problem dependent :—(

_

~

Laronoyp X

4 N

Hmm...

Greedy search minimizes estimated cost to goal h(n)
— cuts search cost considerably
— but not optimal, not complete

— | Uniform-cost search minimizes cost of the path so far g(n)
— is optimal and complete
— but can be wasteful of resources
New-Best-First search minimizes f(n) = g(n) + h(n)
= — combines greedy and uniform-cost searches
2 f(n) = estimated cost of cheapest solution via n
g :. — Provably: complete and optimal, if h(n) is admissible
 \ /
w
<
e
| A* Search
e A" search
Best-first search expanding the node in the fringe with minimal
f(n) = g(n) + h(n)
= e A* search with admissible h(n)
Provably complete, optimal, and optimally efficient using
TREE-SEARCH
e A* search with consistent h(n)
= Remains optimal even using GRAPH-SEARCH
§ 5 (See TREE-SEARCH page 72 and GRAPH-SEARCH page 83)
5\ /

1C

ble heuristi

1ss1

dm

/
A

An admissible heuristic is a heuristic that never overestimates the

cost to reach the goal

S
.4 S
2 B7
= Q
S Q
g E
< =
+ ~=>
= 3]
% ®
v .
ﬂ Q&Jm = £
” S g 3 +
0 = =
) s =2 G| oo
— 2 o S| 2
.4 ° =2 2 gg
o0 < % <
g £ @ & S|
= - g = 8 g
= O
% w S 2 5.2
5 R N >
SR EE 5 5%
3 = =g 2 5 a
SIS o g O 2 S| e
= >“3 ori n
T o @ o w O
2 o O rDQQ)
.'_‘w —
| — Q
B, S "CSE/;:
O.E 9 ® ~|
a2 2) 8
T 1 < <
= =

/

B.Y. Choueiry

—_
J

Instructor’s notes #7
February 10, 2010

/Px* Search From Arad to Bucharest \

(a) Theinitial state >
366=0+366
(b) After expanding Arad Carad >
>CSibiu Tmisoard Czerind >

393=140+253 447=118+329 449=75+374

(c) After expanding Sibiu

Timisoard

447=118+329 449=T75+374

646=280+366 415=239+176 671=291+380 413=220+193

(d) After expanding Rimnicu Vilcea

447=118+329 449=T75+374

526=366+160 417=317+100 553=300+253

(e) After expanding Fagaras

Timisoard

447=118+329 449=75+374
646=280+366

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

(f) After expanding Pitesti

449=75+374

591=338+253 450=450+0

\\ 418=418+0 615=455+160 607=414+193 /

B.Y. Choueiry 18

526=366+160,

Instructor’s notes #7
February 10, 2010

Laronoyp X

A* Search is optimal

G, Gy goal states = ¢(G) = f(G), f(Gz2) = g(G2) h(G) = h(Ga) = 0
G optimal goal state = C* = f(G)
G2 suboptimal = f(G2) > C* = f(G) (1)

Suppose n is not chosen for expansion

© NS
Nej
o) .ﬁ%
h admissible = C* > f(n) (2)
gg’ Since n was not chosen for expansion = f(n) > f(G>) (3)
@)= G (1)
25 (1) and (4) are contradictory = n should be chosen for expansion
w
< / \
¢ ([Which nodes does A* expand?
5| GoOAL-TEST is applied to STATE(node) when a node is
chosen from the fringe for expansion, not when the node is
generated
Theorem 3 & 4 in Pearl 84, original results by Nilsson
e Necessary condition: Any node expanded by A* cannot have an
o f value exceeding C*: For all nodes expanded, f(n) < C*
e Sufficient condition: Every node in the fringe for f(n) < C*
will eventually be expanded by A*
_ In summary
2 e A* expands all nodes with f(n) < C*
5 5 e A* expands some nodes with f(n) = C*
gi \o A* expands no nodes with f(n) > C* /

Laronoyp X

Expanding contours

A* expands nodes from fringe in increasing f value
We can conceptually draw contours in the search space

[\
—
&5
5 The first solution found is necessarily the optimal solution
iéf Careful: a TEST-GOAL is applied at node expansion
23 \ /
w
<
. N
) A* Search is complete
Since A* search expands all nodes with f(n) < C*, it must
eventually reach the goal state unless there are infinitely many
1. 3 a node with infinite branching factor
b2 | nodes f(n) < C*{ or
2. J a path with infinite number of nodes along it
on locally finite graphs
15 A* is complete if ¢ and
o g
g% 36 > 0 constant, the cost of each operator > o
< 2“
B\ /

Laronoyp X

-

A* Search Complexity

Time:
Exponential in (relative error in h X length of solution path)

... quite bad

Space: must keep all nodes in memory

Y Number of nodes within goal contour is exponential in length
of solution.... unless the error in the heuristic function
|h(n) — h*(n)| grows no faster than the log of the actual path
cost: |h(n) — h*(n)] < O(logh*(n))
_ In practice, the error is proportional... impractical..
gé’ major drawback of A*: runs out of space quickly
58 — Memory Bounded Search IDA*(not addressed here)
N\ %
w
<
:
¢
A* Search is optimally efficient
.. for any given evaluation function: no other algorithms that finds
b the optimal solution is guaranteed to expend fewer nodes than A*
Interpretation (proof not presented): Any algorithm that does not
expand all nodes between root and the goal contour risks missing
. the optimal solution
=g
&5
AN /

Laronoyp X

-

Tree-Search vs. Graph-Search

After choosing a node from the fringe and before expanding it,
GRAPH-SEARCH checks whether STATE(node) was visited before to

avoid loops.

— (GRAPH-SEARCH may lose optimal solution

~

[\
ot
Solutions
1. In Graph-Search, discard the more expensive path to a node
mg 2. Ensure that the optimal path to any repeated state is the first
%i; one found
5 5 — Consistency
5\ /
w
< / \
Q .
¢ [Consistency
5
4 h(n) is consistent
If V n and V n’ successor of n along a path, we have
h(n) < k(n,n’) + h(n'), k cost of cheapest path from n to n’
Monotonicity
% | h(n) is monotone
If Vn and V n/ successor of n generated by action a, we have
h(n) <c¢(n,a,n’) + h(n'), n’ is an immediate successor of n
Triangle inequality ((n,n’, goal))
27 | Important: h is consistent < h is monotone
5 5 Beware: of confusing terminology ‘consistent’ and ‘monotone’
° s \ Values of h not necessarily decreasing/nonincreasing /
2k

Laronoyp X

-

Properties of h: Important results

~

e h consistent < h monotone (Pearl 84)
e h consistent = h admissible (AIMA, Exercise 4.7)
[\
~ consistency is stricter than admissibility
e h consistent = f is nondecreasing
f(n') =g(n')+h(n') = g(n)+c(n,a,n’)+h(n) = g(n)+h(n) = f(n)
&5
é,] e h consistent = A* using GRAPH-SEARCH is optimally efficient
< wn
AN %
w
<
é. Pathmax equation You may ignore this slide
g
Monotonicity of f: values along a path are nondecreasing
When f is not monotonic, use pathmax equation
f(n') = max(f(n),g(n') + h(n))
A* never decreases along any path out from root
[\
« o =3
h(n) =4 n
i
. Pathmax
5;’ e guarantees f nondecreasing
5 g e does not guarantee h consistent
< wn
58 e does not guarantee A* + GRAPH-SEARCH is optimally efficient

Laronoyp X

-

Summarizing definitions for A*

e A* is a best-first search that expands the node in the fringe
with minimal f(n) = g(n) + h(n)

An admissible function h never overestimates the distance to

~

[
the goal.
[\~
© e h admissible = A* is complete, optimal, optimally efficient
using TREE-SEARCH
e h consistent < h monotone
h consistent = h admissible
" h consistent = f nondecreasing
&5
52 e h consistent = A* remains optimal using GRAPH-SEARCH
<
N\ /
w
<
¢ | Admissible heuristic functions
<
Examples
e Route-finding problems: straight-line distance
hi(n) = number of misplaced tiles
e 8-puzzle:
ha(n) = total Manhattan distance
w
S
o]
BpHE
g g Start State Goal State
&g
22 | m(S) =7
ES ha(S) =7
AN /

Ig Laronoyp X

0T0Z ‘0T Areniqeyq
L7£ so30U §,1030NI3SUT

-

Performance of admissible heuristic functions

Two criteria to compare admissible heuristic functions:
1. Effective branching factor: b*

2. Dominance: number of nodes expanded

_

Zg Laronoyp X

0T0Z ‘0T Areniqeyq
L7£ so30U §,1030NI3SUT

-

Effective branching factor v*

— The heuristic expands N nodes in total

— The solution depth is d

— b* is the branching factor had the tree been uniform

i (b*)d+1 -1

N=1+b"+ ") +...+ (b e

— Example: N=52, d=5 — b* = 1.92

_

gg Laronoyp X

0T0Z ‘0T Areniqeyq
L7£ so30U §,1030NI3SUT

/Dominance \

If ho(n) > hq(n) for all n (both admissible)
then ho dominates hy and is better for search

Typical search costs: nodes expanded

Sol. depth IDS A*(h1) A%(h2)
d=12 3,644,035 227 73
d=24 too many 39,135 1,641

A* expands all nodes f(n) < C* = g(n) + h(n) < C*
=h(n) < C* —g(n)
If hy < hg, A* with h; will always expand at least as many (if not

more) nodes than A* with ho

— It is always better to use a heuristic function with
higher values, as long as it does not overestimate (remains

\ admissible) /

Laronoyp X

Ve

0T0Z ‘0T Areniqeyq
L7£ so30U §,1030NI3SUT

4 N

How to generate admissible heuristics?

— Use ezact solution cost of a relaxed (easier) problem

Steps:

— Consider problem P

— Take a problem P’ easier than P
— Find solution to P’

— Use solution of P’ as a heuristic for P

- /

Laronoyp X

/Relaxing the 8-puzzle problem \

A tile can move mode square A to square B if
A is (horizontally or vertically) adjacent to B and B is blank

1. A tile can move from square A to square B if A is adjacent to B
The rules are relaxed so that a tile can move to any adjacent

square: the shortest solution can be used as a heuristic

o
ot
(= ha(n))
2. A tile can move from square A to square B if B is blank
Gaschnig heuristic (Exercice 4.9, AIMA, page 135)
9 3. A tile can move from square A to square B
55 The rules of the 8-puzzle are relaxed so that a tile can move
5 anywhere: the shortest solution can be used as a heuristic
°3 (= ha(n))
=5 \ /
w
<
:
¢
An admissible heuristic for the TSP
w
< | Let path be any structure that connects all cities
—> minimum spanning tree heuristic (polynomial)
(Exercice 4.8, AIMA, page 135)
&5
£\ /

Laronoyp X

LE

0T0Z ‘0T Areniqeyq
L7£ so30U §,1030NI3SUT

4 N

Combining several admissible heuristic functions

We have a set of admissible heuristics hi, ho, b3, ..., h,, but no

heuristic that dominates all others, what to do?
— h(n) = max(hi(n),ha(n),..., hy(n))
h is admissible and dominates all others.

— Problem:

Cost of computing the heuristic (vs. cost of expanding nodes)

- /

Laronoyp X

8¢

0T0Z ‘0T Areniqeyq
L7£ so30U §,1030NI3SUT

/[J sing subproblems to derive an admissible heuristic function\

Goal: get 1, 2, 3, 4 into their correct positions, ignoring the
‘identity’ of the other tiles

a
aa a
a aan

Start State Goal State

Cost of optimal solution to subproblem used as a lower bound
(and is substantially more accurate than Manhattan distance)

Pattern databases:
e Identify patterns (which represent several possible states)
e Store cost of exact solutions of patterns

e During search, retrieve cost of pattern and use as a (tight)

estimate

Qost of building the database is amortized over ‘time’ /

