Title: Informed Search Methods
Required reading: AIMA, Chapter 3 (Sections 3.5, 3.6)
LWH: Chapters 6, 10, 13 and 14.

Introduction to Artificial Intelligence
CSCE 476-876, Spring 2010
URL: www.cse.unl.edu/~choueiry/S10-476-876

Berthe Y. Choueiry (Shu-we-ri)
choueiry@cse.unl.edu, (402)472-5444

Outline

- Categorization of search techniques
- Ordered search (search with an evaluation function)
- Best-first search:
 (1) Greedy search (2) A*
- Admissible heuristic functions:
 how to compare them?
 how to generate them?
 how to combine them?
Types of Search (I)

1- Uninformed vs. informed
2- Systematic/constructive vs. iterative improvement

Uninformed:
use only information available in problem definition,
no idea about distance to goal
→ can be incredibly ineffective in practice

Heuristic:
exploits some knowledge of the domain
also useful for solving optimization problems

Types of Search (II)

Systematic, exhaustive, constructive search:
a partial solution is incrementally extended into global solution

Partial solution =
sequence of transitions between states

Global solution =
Solution from the initial state to the goal state

Examples:
\[
\begin{cases}
\text{Uninformed} \\
\text{Informed (heuristic): Greedy search, A*}
\end{cases}
\]

→ Returns the path; solution = path
Types of Search (III)

Iterative improvement:
A state is gradually modified and evaluated until reaching an (acceptable) optimum

→ We don’t care about the path, we care about ‘quality’ of state
→ Returns a state; a solution = good quality state
→ Necessarily an informed search

Examples (informed): { Hill climbing
Simulated Annealing (physics), Taboo search
Genetic algorithms (biology)

Ordered search

- Strategies for systematic search are generated by choosing which node from the fringe to expand first

- The node to expand is chosen by an evaluation function, expressing ‘desirability’ → ordered search

- When nodes in queue are sorted according to their decreasing values by the evaluation function → best-first search

- Warning: ‘best’ is actually ‘seemingly-best’ given the evaluation function. Not always best (otherwise, we could march directly to the goal!)
Search using an evaluation function

- Example: uniform-cost search!
 What is the evaluation function?
 Evaluates cost from to?

- How about the cost to the goal?

\[h(n) = \text{estimated cost of the cheapest path from the state at node } n \text{ to a goal state} \]

\[h(n) \] would help focusing search

Cost to the goal

This information is not part of the problem description

<table>
<thead>
<tr>
<th>Location</th>
<th>Code</th>
<th>Location</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
<td>Neamt</td>
<td>234</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Dobreta</td>
<td>242</td>
<td>Pitești</td>
<td>100</td>
</tr>
<tr>
<td>Eforie</td>
<td>161</td>
<td>Rimnicu Vâlcea</td>
<td>193</td>
</tr>
<tr>
<td>Fagaras</td>
<td>176</td>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Giurgiu</td>
<td>77</td>
<td>Timișoara</td>
<td>329</td>
</tr>
<tr>
<td>Hirsova</td>
<td>151</td>
<td>Urziceni</td>
<td>80</td>
</tr>
<tr>
<td>Iasi</td>
<td>226</td>
<td>Vaslui</td>
<td>199</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>
Best-first search

1. **Greedy search** chooses the node n closest to the goal such as $h(n)$ is minimal

2. **A* search** chooses the least-cost solution
 \[
 \text{solution cost } f(n) = \begin{cases}
 g(n): \text{cost from root to a given node } n \\
 + \hfill & \\
 h(n): \text{cost from the node } n \text{ to the goal node such as } f(n) = g(n) + h(n) \text{ is minimal}
 \end{cases}
 \]

Greedy search

→ First expand the node whose state is ‘closest’ to the goal!

→ Minimize $h(n)$

```
function BEST-FIRST-SEARCH(problem, Eval-Fn) returns a solution sequence
inputs: problem, a problem
Eval-Fn, an evaluation function
Queueing-Fn ← a function that orders nodes by Eval-Fn
return GENERAL-SEARCH(problem, Queueing-Fn)
```

→ Usually, cost of reaching a goal may be estimated, not determined exactly

→ If state at n is goal, $h(n) =$??

→ How to choose $h(n)$? Problem specific! Heuristic!
Greedy search: Romania

$h_{SLD}(n) = \text{straight-line distance between } n \text{ and goal location}$
Greedy search: Properties

→ Like depth-first, tends to follow a single path to the goal

→ Like depth-first \{ Not complete
Not optimal \}

→ Time complexity: \(O(b^m)\), \(m\) maximum depth

→ Space complexity: \(O(b^m)\) retains all nodes in memory

→ Good \(h\) function (considerably) reduces space and time
 but \(h\) functions are problem dependent: ——
Hmm...

Greedy search minimizes estimated cost to goal $h(n)$
 → cuts **search cost** considerably
 → but not optimal, not complete

Uniform-cost search minimizes cost of the path so far $g(n)$
 → is optimal and complete
 → but can be wasteful of resources

New-Best-First search minimizes $f(n) = g(n) + h(n)$
 → combines greedy and uniform-cost searches
 $f(n)$ = estimated cost of cheapest solution via n
 → Provably: complete and optimal, if $h(n)$ is admissible

A* Search

- **A* search**
 Best-first search expanding the node in the fringe with minimal
 $f(n) = g(n) + h(n)$

- **A* search with admissible $h(n)$**
 Provably complete, optimal, and optimally efficient using
 Tree-Search

- **A* search with consistent $h(n)$**
 Remains optimal even using **Graph-Search**

(See **Tree-Search** page 72 and **Graph-Search** page 83)
Admissible heuristic

An admissible heuristic is a heuristic that never overestimates the cost to reach the goal

→ is optimistic

→ thinks the cost of solving is less than it actually is

\[
\begin{align*}
\text{travel: straight line distance} \\
\text{Example:} \\
\text{I can finish college in 3 years} \\
\text{We can fly to Mars by 2003}
\end{align*}
\]

If \(h \) is admissible,

\[f(n) \text{ never overestimates the actual cost of the best solution through } n. \]
A* Search is optimal

G, G₂ goal states ⇒ g(G) = f(G), f(G₂) = g(G₂) \(h(G) = h(G₂) = 0 \)
G optimal goal state ⇒ C* = f(G)
G₂ suboptimal ⇒ f(G₂) > C* = f(G) \(\text{(1)} \)
Suppose n is not chosen for expansion

\[h \text{ admissible } \Rightarrow C* \geq f(n) \] \(\text{(2)} \)
Since n was not chosen for expansion ⇒ f(n) ≥ f(G₂) \(\text{(3)} \)
(2) + (3) ⇒ C* ≥ f(G₂) \(\text{(4)} \)
(1) and (4) are contradictory ⇒ n should be chosen for expansion

Which nodes does A* expand?

GOAL-TEST is applied to STATE(node) when a node is chosen from the fringe for expansion, not when the node is generated

Theorem 3 & 4 in Pearl 84, original results by Nilsson

- **Necessary condition:** Any node expanded by A* cannot have an f value exceeding C*: For all nodes expanded, f(n) ≤ C*
- **Sufficient condition:** Every node in the fringe for f(n) < C* will eventually be expanded by A*

In summary

- A* expands all nodes with f(n) < C*
- A* expands some nodes with f(n) = C*
- A* expands no nodes with f(n) > C*
Expanding contours

A* expands nodes from fringe in increasing f value
We can conceptually draw contours in the search space

The first solution found is necessarily the optimal solution
Careful: a TEST-GOAL is applied at node expansion

A* Search is complete

Since A* search expands all nodes with $f(n) < C^*$, it must eventually reach the goal state unless there are infinitely many nodes $f(n) < C^*$

1. \exists a node with infinite branching factor
 or
2. \exists a path with infinite number of nodes along it

A* is complete if

on locally finite graphs

and

$\exists \delta > 0$ constant, the cost of each operator $> \delta$
A* Search Complexity

Time:
Exponential in (relative error in \(h \times \) length of solution path)
... quite bad

Space: must keep all nodes in memory
Number of nodes within goal contour is exponential in length of solution.... unless the error in the heuristic function
\(|h(n) - h^*(n)|\) grows no faster than the log of the actual path cost:
\(|h(n) - h^*(n)| \leq O(\log h^*(n))
In practice, the error is proportional... impractical..
major drawback of A*: runs out of space quickly

→ Memory Bounded Search IDA* (not addressed here)

A* Search is optimally efficient

.. for any given evaluation function: no other algorithms that finds
the optimal solution is guaranteed to expend fewer nodes than A*

Interpretation (proof not presented): Any algorithm that does not expand all nodes between root and the goal contour risks missing
the optimal solution
Tree-Search vs. Graph-Search

After choosing a node from the fringe and before expanding it,
\textsc{Graph-Search} checks whether \textsc{State}(node) was visited before to
avoid loops.

\rightarrow \textsc{Graph-Search} may lose optimal solution

Solutions

1. In Graph-Search, discard the more expensive path to a node
2. Ensure that the optimal path to any repeated state is the first
one found
 \rightarrow Consistency

Consistency

$h(n)$ is consistent

If \forall n and \forall n' successor of n along a path, we have

\[h(n) \leq k(n,n') + h(n'), \] k cost of cheapest path from n to n'

Monotonicity

$h(n)$ is monotone

If \forall n and \forall n' successor of n generated by action a, we have

\[h(n) \leq c(n,a,n') + h(n'), \] n' is an \underline{immediate} successor of n

Triangle inequality ($\langle n, n', \text{goal} \rangle$)

\textbf{Important:} h is consistent \Leftrightarrow h is monotone

\textbf{Beware:} of confusing terminology ‘consistent’ and ‘monotone’

Values of h not necessarily decreasing/nonincreasing
Properties of h: Important results

- h consistent \Leftrightarrow h monotone \hfill (Pearl 84)

- h consistent \Rightarrow h admissible \hfill (AIMA, Exercise 4.7)
 consistency is stricter than admissibility

- h consistent \Rightarrow f is nondecreasing
 \[f(n') = g(n') + h(n') = g(n) + c(n, a, n') + h(n') \geq g(n) + h(n) = f(n) \]

- h consistent \Rightarrow A^* using GRAPH-SEARCH is optimally efficient

Pathmax equation

You may ignore this slide

Monotonicity of f: values along a path are nondecreasing

When f is not monotonic, use pathmax equation

\[f(n') = \max(f(n), g(n') + h(n')) \]

A* never decreases along any path out from root

Pathmax

- guarantees f nondecreasing
- does not guarantee h consistent
- does not guarantee A^* + GRAPH-SEARCH is optimally efficient
Summarizing definitions for A*

- A* is a best-first search that expands the node in the fringe with minimal \(f(n) = g(n) + h(n) \)
- An admissible function \(h \) never overestimates the distance to the goal.
- \(h \) admissible \(\Rightarrow \) A* is complete, optimal, optimally efficient using Tree-Search
- \(h \) consistent \(\Leftrightarrow \) \(h \) monotone
 \(h \) consistent \(\Rightarrow \) \(h \) admissible
 \(h \) consistent \(\Rightarrow f \) nondecreasing
- \(h \) consistent \(\Rightarrow \) A* remains optimal using Graph-Search

Admissible heuristic functions

Examples

- Route-finding problems: straight-line distance
- 8-puzzle: \(h_1(n) = \) number of misplaced tiles
 \(h_2(n) = \) total Manhattan distance

\[
\begin{align*}
\text{Start State} & : \begin{array}{ccc}
5 & 4 & \\
6 & 1 & 8 \\
7 & 3 & 2 \\
\end{array} \\
\text{Goal State} & : \begin{array}{ccc}
1 & 2 & 3 \\
8 & 4 & \\
7 & 6 & 5 \\
\end{array}
\end{align*}
\]

\(h_1(S) = \) ?
\(h_2(S) = \) ?
Performance of admissible heuristic functions

Two criteria to compare admissible heuristic functions:

1. Effective branching factor: \(b^* \)
2. Dominance: number of nodes expanded

Effective branching factor \(b^* \)

- The heuristic expands \(N \) nodes in total
- The solution depth is \(d \)

\[b^* \text{ is the branching factor had the tree been uniform} \]

\[N = 1 + b^* + (b^*)^2 + \ldots + (b^*)^d = \frac{(b^*)^{d+1} - 1}{b^* - 1} \]

- Example: \(N=52, \ d=5 \) → \(b^* = 1.92 \)
Dominance

If \(h_2(n) \geq h_1(n) \) for all \(n \) (both admissible)
then \(h_2 \) dominates \(h_1 \) and is better for search

Typical search costs: nodes expanded

<table>
<thead>
<tr>
<th>Sol. depth</th>
<th>IDS</th>
<th>(A^*(h_1))</th>
<th>(A^*(h_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d = 12)</td>
<td>3,644,035</td>
<td>227</td>
<td>73</td>
</tr>
<tr>
<td>(d = 24)</td>
<td>too many</td>
<td>39,135</td>
<td>1,641</td>
</tr>
</tbody>
</table>

\(A^* \) expands all nodes \(f(n) < C^* \Rightarrow g(n) + h(n) < C^* \)
\(\Rightarrow h(n) < C^* - g(n) \)

If \(h_1 \leq h_2 \), \(A^* \) with \(h_1 \) will always expand at least as many (if not
more) nodes than \(A^* \) with \(h_2 \)

\(\rightarrow \) It is always better to use a heuristic function with
higher values, as long as it does not overestimate (remains
admissible)

How to generate admissible heuristics?

\(\rightarrow \) Use exact solution cost of a relaxed (easier) problem

Steps:
- Consider problem \(P \)
- Take a problem \(P' \) easier than \(P \)
- Find solution to \(P' \)
- Use solution of \(P' \) as a heuristic for \(P \)
Relaxing the 8-puzzle problem

A tile can move mode square A to square B if
A is (horizontally or vertically) adjacent to B and B is blank

1. A tile can move from square A to square B if A is adjacent to B
The rules are relaxed so that a tile can move to any adjacent square: the shortest solution can be used as a heuristic
\(\equiv h_2(n) \)

2. A tile can move from square A to square B if B is blank
Gaschnig heuristic (Exercice 4.9, AIMA, page 135)

3. A tile can move from square A to square B
The rules of the 8-puzzle are relaxed so that a tile can move anywhere: the shortest solution can be used as a heuristic
\(\equiv h_1(n) \)

An admissible heuristic for the TSP

Let path be any structure that connects all cities
\(\Rightarrow \) minimum spanning tree heuristic (polynomial)
(Exercice 4.8, AIMA, page 135)
Combining several admissible heuristic functions

We have a set of admissible heuristics $h_1, h_2, h_3, \ldots, h_m$ but no heuristic that dominates all others, what to do?

$$\rightarrow h(n) = \max(h_1(n), h_2(n), \ldots, h_m(n))$$

h is admissible and dominates all others.

\rightarrow Problem:

Cost of computing the heuristic (vs. cost of expanding nodes)

Using subproblems to derive an admissible heuristic function

Goal: get 1, 2, 3, 4 into their correct positions, ignoring the ‘identity’ of the other tiles

Cost of optimal solution to subproblem used as a lower bound (and is substantially more accurate than Manhattan distance)

Pattern databases:

- Identify patterns (which represent several possible states)
- Store cost of exact solutions of patterns
- During search, retrieve cost of pattern and use as a (tight) estimate

Cost of building the database is amortized over ‘time’