Berthe Y. Choueiry (Shu-we-ri) choueiry@cse.unl.edu, (402) 472-5444
Berthe Y. Choueiry (Shu-we-ri) choueiry@cse.unl.edu, (402) 472-5444

URL: www.cse.unl.edu/~choueiry/S10-476-876
Introduction to Artificial Intelligence
CSCE 476-876, Spring 2010
\qquad

Title: Informed Search Methods
Required reading: AIMA, Chapter 3 (Sections 3.5, 3.6)
LWH: Chapters 6, 10, 13 and 14.
\leftharpoondown
Кı!əпоч: $\lambda \cdot$ '

1- Uninformed vs. informed
2- Systematic/constructive vs. iterative improvement
ω Uninformed :
use only information available in problem definition,
no idea about distance to goal
\rightarrow can be incredibly ineffective in practice

Heuristic :

exploits some knowledge of the domain
also useful for solving optimization problems
\qquad

Types of Search (II)

Systematic, exhaustive, constructive search:
a partial solution is incrementally extended into global solution

Partial solution $=$
$\mapsto \quad$ sequence of transitions between states
Global solution $=$
Solution from the initial state to the goal state
Examples: $\left\{\begin{array}{l}\text { Uninformed } \\ \text { Informed (heuristic): Greedy search, A* }\end{array}\right.$
\rightarrow Returns the path; solution $=$ path

Types of Search (III)

Iterative improvement:

A state is gradually modified and evaluated until reaching an (acceptable) optimum
cr \rightarrow We don't care about the path, we care about 'quality' of state
\rightarrow Returns a state; a solution $=$ good quality state
\rightarrow Necessarily an informed search

Examples (informed): $\left\{\begin{array}{l}\text { Hill climbing } \\ \text { Simulated Annealing (physics), Taboo search } \\ \text { Genetic algorithms (biology) }\end{array}\right.$辟

Search using an evaluation function

- Example: uniform-cost search!

What is the evaluation function?
Evaluates cost from \qquad to \qquad .$?$

- How about the cost to the goal?
$h(n)=\underline{\text { estimated }}$ cost of the cheapest
path from the state at node n to a goal state
$h(n)$ would help focusing search

This information is not part of the problem description

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Dobreta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Best-first search

1. Greedy search chooses the node n closest to the goal such as $h(n)$ is minimal
2. A^{*} search chooses the least-cost solution solution cost $f(n)\left\{\begin{array}{l}g(n) \text { : cost from root to a given node } n \\ + \\ h(n) \text { : cost from the node } n \text { to the goal node }\end{array}\right.$ such as $f(n)=g(n)+h(n)$ is minimal

Greedy search

\rightarrow First expand the node whose state is 'closest' to the goal!
\rightarrow Minimize $h(n)$
function BEST-FIRST-SEARCH (problem, EvAL-FN) returns a solution sequence inputs: problem, a problem

Eval-Fn, an evaluation function
Queueing-Fn \leftarrow a function that orders nodes by Eval-Fn return General-Search(problem, Queueing-Fn)
\rightarrow Usually, cost of reaching a goal may be estimated, not determined exactly
\rightarrow If state at n is goal, $h(n)=$?
\rightarrow How to choose $h(n)$?
Problem specific! Heuristic!
$h_{\text {SLD }}(n)=$ straight-line distance between n and goal location

Greedy search: Trip from Arad to Bucharest

Greedy search: Problems

From Iasi to Fagaras? $\left\{\begin{array}{l}\text { False starts: Neamt is a dead-end } \\ \text { Looping }\end{array}\right.$

Greedy search: Properties

\rightarrow Like depth-first, tends to follow a single path to the goal
$\nleftarrow \rightarrow$ Like depth-first $\left\{\begin{array}{l}\text { Not complete } \\ \text { Not optimal }\end{array}\right.$
\rightarrow Time complexity: $O\left(b^{m}\right)$, m maximum depth
\rightarrow Space complexity: $O\left(b^{m}\right)$ retains all nodes in memory
\rightarrow Good h function (considerably) reduces space and time but h functions are problem dependent:-(

หоч:
 Hmm...

Greedy search minimizes estimated cost to goal $h(n)$
\rightarrow cuts search cost considerably
\rightarrow but not optimal, not complete
$\stackrel{\bullet}{\mathrm{C}} \quad$ Uniform-cost search minimizes cost of the path so far $g(n)$
\rightarrow is optimal and complete
\rightarrow but can be wasteful of resources
New-Best-First search minimizes $f(n)=g(n)+h(n)$
\rightarrow combines greedy and uniform-cost searches $f(n)=$ estimated cost of cheapest solution via n
\rightarrow Provably: complete and optimal, if $h(n)$ is admissible

A* Search

- A* search

Best-first search expanding the node in the fringe with minimal $f(n)=g(n)+h(n)$

- A* search with admissible $h(n)$

Provably complete, optimal, and optimally efficient using
Tree-Search

- A* search with consistent $h(n)$

Remains optimal even using Graph-Search
(See Tree-Search page 72 and Graph-Search page 83)
B. Y. Choueiry

17 February 10, 2010

A* Search From Arad to Bucharest

(d) After expanding Rimnicu Vile

(e) After expanding Fagaras

A* Search is optimal

G, G_{2} goal states $\Rightarrow g(G)=f(G), f\left(G_{2}\right)=g\left(G_{2}\right) \quad{ }_{h(G)}=h\left(G_{2}\right)=0$
G optimal goal state $\Rightarrow C^{*}=f(G)$
G_{2} suboptimal $\Rightarrow f\left(G_{2}\right)>C^{*}=f(G)$
Suppose n is not chosen for expansion

h admissible $\Rightarrow C^{*} \geq f(n)$
Since n was not chosen for expansion $\Rightarrow f(n) \geq f\left(G_{2}\right)$
$(2)+(3) \Rightarrow C^{*} \geq f\left(G_{2}\right)$
(1) and (4) are contradictory $\Rightarrow n$ should be chosen for expansion

Which nodes does A^{*} expand?

Goal-Test is applied to State(node) when a node is chosen from the fringe for expansion, not when the node is generated

Theorem 3 \& 4 in Pearl 84, original results by Nilsson

- Necessary condition: Any node expanded by A* cannot have an f value exceeding C^{*} : For all nodes expanded, $f(n) \leq C^{*}$
- Sufficient condition: Every node in the fringe for $f(n)<C^{*}$ will eventually be expanded by A^{*}

In summary

- A* expands all nodes with $f(n)<C^{*}$
- A* expands some nodes with $f(n)=C^{*}$
- A* expands no nodes with $f(n)>C^{*}$

Expanding contours

A* expands nodes from fringe in increasing f value
We can conceptually draw contours in the search space

The first solution found is necessarily the optimal solution Careful: a Test-Goal is applied at node expansion

\mathbf{A}^{*} Search is complete

Since A* search expands all nodes with $f(n)<C^{*}$, it must eventually reach the goal state unless there are infinitely many nodes $f(n)<C^{*}\left\{\begin{array}{l}1 . \exists \text { a node with infinite branching factor } \\ \text { or }\end{array}\right.$
2. \exists a path with infinite number of nodes along it
A^{*} is complete if $\left\{\begin{array}{l}\text { on locally finite graphs } \\ \text { and } \\ \exists \delta>0 \text { constant, the cost of each operator }>\delta\end{array}\right.$

A* Search Complexity

Time:

Exponential in (relative error in $h \times$ length of solution path)
... quite bad
Space: must keep all nodes in memory
N Number of nodes within goal contour is exponential in length of solution.... unless the error in the heuristic function $\left|h(n)-h^{*}(n)\right|$ grows no faster than the log of the actual path cost: $\left|h(n)-h^{*}(n)\right| \leq O\left(\log h^{*}(n)\right)$
In practice, the error is proportional... impractical..
major drawback of A*: runs out of space quickly
\rightarrow Memory Bounded Search IDA*(not addressed here)

A* Search is optimally efficient

.. for any given evaluation function: no other algorithms that finds the optimal solution is guaranteed to expend fewer nodes than A^{*}

Interpretation (proof not presented): Any algorithm that does not expand all nodes between root and the goal contour risks missing the optimal solution

Tree-Search vs. Graph-Search

After choosing a node from the fringe and before expanding it, Graph-Search checks whether State(node) was visited before to avoid loops.
\rightarrow GRAPH-SEARCH may lose optimal solution

Solutions

1. In Graph-Search, discard the more expensive path to a node
2. Ensure that the optimal path to any repeated state is the first one found
\rightarrow Consistency

Consistency

$h(n)$ is consistent
If $\forall n$ and $\forall n^{\prime}$ successor of n along a path, we have
$h(n) \leq k\left(n, n^{\prime}\right)+h\left(n^{\prime}\right), k$ cost of cheapest path from n to n^{\prime}

Monotonicity

$h(n)$ is monotone
If $\forall n$ and $\forall n^{\prime}$ successor of n generated by action a, we have $h(n) \leq c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right), n^{\prime}$ is an immediate successor of n
Triangle inequality $\left(\left\langle n, n^{\prime}\right.\right.$, goal $\left.\rangle\right)$

Important: h is consistent $\Leftrightarrow h$ is monotone
Beware: of confusing terminology 'consistent' and 'monotone'
Values of h not necessarily decreasing/nonincreasing

Properties of h : Important results

- h consistent $\Leftrightarrow h$ monotone
- h consistent $\Rightarrow h$ admissible consistency is stricter than admissibility
- h consistent $\Rightarrow f$ is nondecreasing
$f\left(n^{\prime}\right)=g\left(n^{\prime}\right)+h\left(n^{\prime}\right)=g(n)+c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right) \geq g(n)+h(n)=f(n)$
- h consistent $\Rightarrow A^{*}$ using Graph-Search is optimally efficient

Pathmax equation

Monotonicity of f : values along a path are nondecreasing When f is not monotonic, use pathmax equation

$$
f\left(n^{\prime}\right)=\max \left(f(n), g\left(n^{\prime}\right)+h\left(n^{\prime}\right)\right)
$$

A* never decreases along any path out from root

Pathmax

- guarantees f nondecreasing
- does not guarantee h consistent
- does not guarantee A* + Graph-Search is optimally efficient

Summarizing definitions for \mathbf{A}^{*}

- A* is a best-first search that expands the node in the fringe with minimal $f(n)=g(n)+h(n)$
- An admissible function h never overestimates the distance to the goal.
- h admissible $\Rightarrow A^{*}$ is complete, optimal, optimally efficient using Tree-Search
- h consistent $\Leftrightarrow h$ monotone
h consistent $\Rightarrow h$ admissible
h consistent $\Rightarrow f$ nondecreasing
- h consistent $\Rightarrow A^{*}$ remains optimal using Graph-Search

Admissible heuristic functions

Examples

- Route-finding problems: straight-line distance
- 8-puzzle: $\left\{\begin{array}{l}h_{1}(n)=\text { number of misplaced tiles } \\ h_{2}(n)=\text { total Manhattan distance }\end{array}\right.$
Examples

$h_{1}(S)=?$
$h_{2}(S)=$?

Performance of admissible heuristic functions
$\underset{\sim}{0}$ Two criteria to compare admissible heuristic functions：
1．Effective branching factor：b^{*}
2．Dominance：number of nodes expanded

Effective branching factor b^{*}

－The heuristic expands N nodes in total
－The solution depth is d
$\longrightarrow b^{*}$ is the branching factor had the tree been uniform

$$
N=1+b^{*}+\left(b^{*}\right)^{2}+\ldots+\left(b^{*}\right)^{d}=\frac{\left(b^{*}\right)^{d+1}-1}{b^{*}-1}
$$

－Example：$N=52, d=5 \rightarrow b^{*}=1.92$

Dominance

If $h_{2}(n) \geq h_{1}(n)$ for all n (both admissible) then h_{2} dominates h_{1} and is better for search Typical search costs: nodes expanded

Sol. depth	IDS	$\mathbf{A}^{*}\left(h_{1}\right)$	$\mathbf{A}^{*}\left(h_{2}\right)$
$d=12$	$3,644,035$	227	73
$d=24$	too many	39,135	1,641

A* expands all nodes $f(n)<C^{*} \Rightarrow g(n)+h(n)<C^{*}$ $\Rightarrow h(n)<C^{*}-g(n)$
If $h_{1} \leq h_{2}$, A^{*} with h_{1} will always expand at least as many (if not more) nodes than A^{*} with h_{2}
\longrightarrow It is always better to use a heuristic function with higher values, as long as it does not overestimate (remains admissible)

How to generate admissible heuristics?

\rightarrow Use exact solution cost of a relaxed (easier) problem
Steps:

- Consider problem P
- Take a problem P^{\prime} easier than P
- Find solution to P^{\prime}
- Use solution of P^{\prime} as a heuristic for P

Relaxing the 8-puzzle problem

A tile can move mode square A to square B if A is (horizontally or vertically) adjacent to B and B is blank

1. A tile can move from square A to square B if A is adjacent to B The rules are relaxed so that a tile can move to any adjacent square: the shortest solution can be used as a heuristic ($\equiv h_{2}(n)$)
2. A tile can move from square A to square B if B is blank Gaschnig heuristic (Exercice 4.9, AIMA, page 135)
3. A tile can move from square A to square B

The rules of the 8-puzzle are relaxed so that a tile can move anywhere: the shortest solution can be used as a heuristic $\left(\equiv h_{1}(n)\right)$

An admissible heuristic for the TSP

Let path be any structure that connects all cities
\Longrightarrow minimum spanning tree heuristic (polynomial)
(Exercice 4.8, AIMA, page 135)

Combining several admissible heuristic functions

We have a set of admissible heuristics $h_{1}, h_{2}, h_{3}, \ldots, h_{m}$ but no heuristic that dominates all others, what to do?

$$
\longrightarrow h(n)=\max \left(h_{1}(n), h_{2}(n), \ldots, h_{m}(n)\right)
$$

h is admissible and dominates all others.
\rightarrow Problem:

Cost of computing the heuristic (vs. cost of expanding nodes)

