Laronoyp X

-

Title: Solving Problems by Searching
AIMA: Chapter 3 (Sections 3.4)

Introduction to Artificial Intelligence

—
CSCE 476-876, Spring 2010
URL: www.cse.unl.edu/ " choueiry/S10-476-876
= Berthe Y. Choueiry (Shu-we-ri)
2 choueiry@cse.unl.edu, (402)472-5444
Q w
-
SR
oo
w
=<
g
5
g
function GENERAL-SEARCH(problem, strategy) returnsasolution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidatesfor expansionthen return failure
choose aleaf node for expansion according to strategy
if the node containsa goal state then return the corresponding solution
RO €else expand the node and add the resulting nodes to the search tree
end
Essence of search: which node to expand first?
— search strategy
5
5; A strategy is defined by picking the order of node expansion
X
g
.-
o3
oo

Laronoyp X

0T0Z ‘0T Areniqeyq
97 sejou s,1030NI}SUT

4 N

Types of Search
Uninformed: use only information available in problem definition

Heuristic: exploits some knowledge of the domain

Uninformed search strategies
Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search

Iterative deepening depth-first search

Bidirectional search

/@@FP"!\’&‘

Laronoyp X

0T0Z ‘0T Areniqeyq
97 sejou s,1030NI}SUT

4 N

Search strategies

Criteria for evaluating search:
1. Completeness: does it always find a solution if one exists?
2. Time complexity: number of nodes generated /expanded
3. Space complexity: maximum number of nodes in memory

4. Optimality: does it always find a least-cost solution?

Time/space complexity measured in terms of:
e b: maximum branching factor of the search tree
e d: depth of the least-cost solution

e m: maximum depth of the search space (may be c0)

- /

Laronoyp X

4 N

Breadth-first search (I)

— Expand root node
— Expand all children of root
— Expand each child of root

— Expand successors of each child of root, etc.

) /\

Ot

_ — Expands nodes at depth d before nodes at depth d + 1
gé’ — Systematically considers all paths length 1, then length 2, etc.
£ % — Implement: put successors at end of queue.. FIFO

v

<

2 N

Breadth-first search (2)
o> >®
D>E) © PO
©® ©® PO ® ® ©

0T0Z ‘0T Areniqeyq

Laronoyp X

97 Soj0U §,1030NISUT

/Breadth—ﬁrst search (3)

—— One solution?

— Many solutions? Finds shallowest goal first

1. Complete? Yes, if b is finite

2. Optimal? provided cost increases monotonically with depth,
not in general (e.g., actions have same cost)

3. Time? 1 +b+b>4+b3+ ... + b4+ b(b% — 1) = O(b?+1)

branching factor b

O(bd—i—l)
depth d

4. Space? same, O(b?*1), keeps every node in memory, big
problem
can easily generate nodes at 10MB /sec so 24hrs — 860GB

/

0T0Z ‘0T Areniqeyq

Laronoyp X

97 Soj0U §,1030NI3SUT

Uniform-cost search (I)

— Breadth-first does not consider path cost g(x)
—— Uniform-cost expands first lowest-cost node on the fringe

— Implement: sort queue in decreasing cost order

When g(x) = Depth(x) — Breadth-first = Uniform-cost

S@
0 s
A '/BI\C'
1 5 15
s
A B c
5 15
G
11 S
A B 19
15
G G
1 10
(a (b)

~

Laronoyp X

-

Uniform-cost search (2)

1. Complete?
Yes, if cost > ¢

2. Optimal?
If the cost is a monotonically increasing function
© When cost is added up along path, an operator’s cost ?
3. Time?
of nodes with ¢ < cost of optimal solution, O(b/¢"/€1)
where C* is the cost of the optimal solution
5 d 4. Space?
T a *
£3 # of nodes with ¢ < cost of optimal solution, O(bI¢" /1)
< @
i\ /
w
< / \
¢ [Depth-first search (I)
e
2 — Expands nodes at deepest level in tree
— When dead-end, goes back to shallower levels
— Implement: put successors at front of queue.. LIFO
A
- /<\ /<<\
S
&5
% 5 — Little memory: path and unexpanded nodes
o8 \For b: branching factor, m: maximum depth, space ? /
23k

Laronoyp X

®
. S
@ v
. ®
®

-~

Depth-first search (2)

D E
A2 o%iely

—_
—_
2\ /
w
< / \
¢ [Depth-first search (3)
5| Time complexity:
We may need to expand all paths, O(b™)
When there are many solutions, DFS may be quicker than BFS
When m is big, much larger than d, oo (deep, loops), .. troubles
— Major drawback of DFS: going deep where there is no solution..
—_
™| Properties:
1. Complete? Not in infinite spaces, complete in finite spaces
2. Optimal?
c 3. Time? O(b™) Woow..
E; terrible if m is much larger than d, but if solutions are dense,
§ : may be much faster than breadth-first
Eé’ \4 Space? O(bm), linear! Woow.. /
24

Laronoyp X

-

Depth-limited search (I)

— DFS is going too deep, put a threshold on depth!
For instance, 20 cities on map for Romania, any node deeper
than 19 is cycling. Don’t expand deeper!

— Implement: nodes at depth [have no successor

~

3 Properties:
1. Complete?
2. Optimal?
= 3. Time? (given [depth limit)
o s
;’§ 4. Space? (given [depth limit)
;5 Problem: how to choose {7
A\ /
w
< / \
¢ (Iterative-deepening search (I)
e
Z | - DLS with depth = 0
— DLS with depth =1
— DLS with depth = 2
— DLS with depth = 3...
Limit=0 @
Limit=1 @
_ A
Limit=3 @ A
&5
;i \—> Combines benefits of DFS and BFS

Laronoyp X

Iterative-deepening search (2)

Limt=0 _ *®)

Limit=1 *®

Limit=2 *®

.

» O/.\>© 0/.\.
_ So e S SN
ot
timit=3 @ ./o\. K\o ﬁ\
v
=
: (
Z | Iterative-deepening search (3)
— combines benefits of DFS and BFS
Properties:
S| 1. Time? (d+1).b° + (d).b+ (d —1).b% + ... 4+ 1.0% = O(b?)
2. Space? O(bd), like DFS
3. Complete? like BF'S
3 4. Optimal? like BFS (if step cost = 1)
o s

Laronoyp X

4 N

Iterative-deepening search (4)

— Some nodes are expanded several times, wasteful?
N(BFS) = b+ b+ >+ ...+ b% + (b*F —q)
N(IDS) = (d)b+ (d — 1)b® + ... + (1)b?

—_
\]
Numerical comparison for b = 10 and d = 5:
N(IDS) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450
N(BFS) = 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 =
5 1,111,100
o g
Z§ — IDS is preferred when search space is large and depth unknown
w
=
. N
: Bidirectional search (I)
— Given initial state and the goal state, start search from both
ends and meet in the middle
—_
Z AWs SEWE
©i @@ =
j — Assume same b branching factor, 3 solution at depth d, time:
25| 0@20%?) = 0(b¥/?)
:;5 b=10,d =6, DFS= 1,111,111 nodes, BDS=2,222 nodes!

Laronoyp X

-

Bidirectional search (2)

In practice :—(

If operator are invertible, no problem

e What if 3 many goals (set state)?

e Need to define predecessor operators to search backwards

—_
© do as for multiple-state search
e need to check the 2 fringes to see how they match
need to check whether any node in one space appears in the
other space (use hashing)
L& need to keep all nodes in a half in memory O(b%/?)
&5
52 e What kind of search in each half space?
< @
A\ /
w
<
. N
:
| Summary
Criterion Breadth- Uniform- Depth- Depth- [terative
First Cost First Limited Deepening
Complete? Yes™ Yes™ No Yes, if [> d Yes
wo | | Time pit! ple™ /el ™ b b?
S
Space patt ple™ /el bm bl bd
Optimal? Yes™ Yes™ No No Yes
b branching factor
mg d solution depth
Cfi; m maximum depth of tree
i< | 1 depth limit
A\ /

Laronoyp X

-

Loops: Avoid repeated states (I)
Avoid expanding states that have already been visited
Valid for both infinite and finite trees

m maximum depth

Example: ¢ m + 1 states
b .
= 2" possible branches (paths)
A
B
5 C
o g
&5
£ 8 D
i
=5
i\ /
v
< / \
¢ [Loops: (2)
e
< _ . Open list: Fringe
Keep nodes in two lists:
Closed list: Leaf and expansed nodes
Discard a current node that matches a node in the closed list
Tree-Search — Graph-Search
A
B
b
[\ c
D
Issues:
B 1. Implementation: hash table, access is constant time
ﬂjg Trade-off cost of storing+checking vs. cost of searching
&5
8 2. Losing optimality
i; when new path is cheaper/shorter of the one stored
é;i \3 DF'S and IDS now require exponential storage /

0T0Z ‘0T Areniqeyq

Laronoyp X

€¢

97 Soj0U §,1030NISUT

-~

Summary
Path: sequence of actions leading from one state to another

Partial solution: a path from an initial state to another state

Search: develop a sets of partial solutions
e Search tree & its components (node, root, leaves, fringe)

Data structure for a search node

Search space vs. state space

Node expansion, queue order

Search types: uninformed vs. heuristic

e 6 uninformed search strategies

e 4 criteria for evaluating & comparing search strategies

_

~

