function GENERAL-SEARCH(problem, strategy) returns a solution, or failure
 initialize the search tree using the initial state of problem
 loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
 end

Essence of search: which node to expand first?

→ search strategy

A strategy is defined by picking the order of node expansion
Types of Search

Uninformed: use only information available in problem definition

Heuristic: exploits some knowledge of the domain

Uninformed search strategies

1. Breadth-first search
2. Uniform-cost search
3. Depth-first search
4. Depth-limited search
5. Iterative deepening depth-first search
6. Bidirectional search

Search strategies

Criteria for evaluating search:

1. Completeness: does it always find a solution if one exists?
2. Time complexity: number of nodes generated/expanded
3. Space complexity: maximum number of nodes in memory
4. Optimality: does it always find a least-cost solution?

Time/space complexity measured in terms of:

- b: maximum branching factor of the search tree
- d: depth of the least-cost solution
- m: maximum depth of the search space (may be ∞)
Breadth-first search (I)

→ Expand root node
→ Expand all children of root
→ Expand each child of root
→ Expand successors of each child of root, etc.

→ Expands nodes at depth d before nodes at depth $d + 1$
→ Systematically considers all paths length 1, then length 2, etc.
→ Implement: put successors at end of queue... FIFO

Breadth-first search (2)
Breadth-first search (3)

→ One solution?
→ Many solutions? Finds shallowest goal first

1. Complete? Yes, if b is finite
2. Optimal? provided cost increases monotonically with depth, not in general (e.g., actions have same cost)
3. Time? $1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$

\[O(b^{d+1}) \begin{cases}
\text{branching factor } b \\
\text{depth } d
\end{cases} \]

4. Space? same, $O(b^{d+1})$, keeps every node in memory, big problem can easily generate nodes at 10MB/sec so 24hrs = 860GB

Uniform-cost search (I)

→ Breadth-first does not consider path cost $g(x)$
→ Uniform-cost expands first lowest-cost node on the fringe
→ Implement: sort queue in decreasing cost order

When $g(x) = \text{Depth}(x)$ → Breadth-first \equiv Uniform-cost
Uniform-cost search (2)

1. Complete?
 Yes, if cost $\geq \epsilon$

2. Optimal?
 If the cost is a monotonically increasing function
 When cost is added up along path, an operator’s cost?

3. Time?
 \# of nodes with $g \leq$ cost of optimal solution, $O(b^{C^*/\epsilon})$
 where C^* is the cost of the optimal solution

4. Space?
 \# of nodes with $g \leq$ cost of optimal solution, $O(b^{C^*/\epsilon})$

Depth-first search (I)

\rightarrow Expands nodes at deepest level in tree
\rightarrow When dead-end, goes back to shallower levels
\rightarrow Implement: put successors at front of queue, LIFO

\rightarrow Little memory: path and unexpanded nodes
For b: branching factor, m: maximum depth, space?
Depth-first search (3)

Time complexity:
We may need to expand all paths, $O(b^m)$
When there are many solutions, DFS may be quicker than BFS
When m is big, much larger than d, ∞ (deep, loops), .. troubles
\longrightarrow Major drawback of DFS: going deep where there is no solution..

Properties:

1. Complete? Not in infinite spaces, complete in finite spaces
2. Optimal?

3. Time? $O(b^m)$ \hspace{1cm} Woow..
 \hspace{1cm} terrible if m is much larger than d, but if solutions are dense,
 \hspace{1cm} may be much faster than breadth-first

4. Space? $O(bm)$, linear! \hspace{1cm} Woow..
Depth-limited search (I)

→ DFS is going too deep, put a threshold on depth!
For instance, 20 cities on map for Romania, any node deeper than 19 is cycling. Don’t expand deeper!
→ Implement: nodes at depth l have no successor

Properties:
1. Complete?
2. Optimal?
3. Time? (given l depth limit)
4. Space? (given l depth limit)

Problem: how to choose l?

Iterative-deepening search (I)

→ DLS with depth = 0
→ DLS with depth = 1
→ DLS with depth = 2
→ DLS with depth = 3...

→ Combines benefits of DFS and BFS
Iterative-deepening search (2)

→ combines benefits of DFS and BFS

Properties:

1. Time? \((d + 1).b^0 + (d).b + (d - 1).b^2 + \ldots + 1.b^d = O(b^d) \)
2. Space? \(O(b.d) \), like DFS
3. Complete? like BFS
4. Optimal? like BFS (if step cost = 1)
Iterative-deepening search (4)

→ Some nodes are expanded several times, wasteful?
\[N(\text{BFS}) = b + b^2 + b^3 + \ldots + b^d + (b^{d+1} - d) \]
\[N(\text{IDS}) = (d)b + (d - 1)b^2 + \ldots + (1)b^d \]

Numerical comparison for \(b = 10 \) and \(d = 5 \):
\[N(\text{IDS}) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450 \]
\[N(\text{BFS}) = 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 = 1,111,100 \]

→ IDS is preferred when search space is large and depth unknown

Bidirectional search (I)

→ Given initial state and the goal state, start search from both ends and meet in the middle

→ Assume same \(b \) branching factor, \(\exists \) solution at depth \(d \), time:
\[O(2b^{d/2}) = O(b^{d/2}) \]
\[b = 10, d = 6, \text{DFS} = 1,111,111 \text{ nodes}, \text{BDS} = 2,222 \text{ nodes!} \]
Bidirectional search (2)

In practice:—(

- Need to define predecessor operators to search backwards
 If operator are invertible, no problem
- What if ∃ many goals (set state)?
 do as for multiple-state search
- need to check the 2 fringes to see how they match
 need to check whether any node in one space appears in the
 other space (use hashing)
 need to keep all nodes in a half in memory $O(b^{d/2})$
- What kind of search in each half space?

Summary

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes*</td>
<td>Yes*</td>
<td>No</td>
<td>Yes, if $l \geq d$</td>
<td>Yes</td>
</tr>
<tr>
<td>Time (b)</td>
<td>b^{d+1}</td>
<td>$b^{[C^*/\epsilon]}$</td>
<td>b^m</td>
<td>b^l</td>
<td>b^d</td>
</tr>
<tr>
<td>Space (b)</td>
<td>b^{d+1}</td>
<td>$b^{[C^*/\epsilon]}$</td>
<td>bm</td>
<td>bl</td>
<td>bd</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes*</td>
<td>Yes*</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

b branching factor
d solution depth
m maximum depth of tree
l depth limit
Loops: Avoid repeated states (I)

Avoid expanding states that have already been visited

Valid for both infinite and finite trees

\[
\begin{cases}
 m \text{ maximum depth} \\
 m + 1 \text{ states} \\
 2^m \text{ possible branches (paths)}
\end{cases}
\]

Example:

- Initial state (`A`)
- States through which the algorithm passes
- Final state (`A`)

Issues:

1. Implementation: hash table, access is constant time

 Trade-off cost of storing + checking vs. cost of searching

2. Losing optimality

 when new path is cheaper/shorter of the one stored

3. DFS and IDS now require exponential storage
Summary

Path: sequence of actions leading from one state to another

Partial solution: a path from an initial state to another state

Search: develop a sets of partial solutions

- Search tree & its components (node, root, leaves, fringe)
- Data structure for a search node
- Search space vs. state space
- Node expansion, queue order
- Search types: uninformed vs. heuristic
- 6 uninformed search strategies
- 4 criteria for evaluating & comparing search strategies