Solving Problems by Searching

AIMA: Chapter 3 (Sections 3.4)

Introduction to Artificial Intelligence CSCE 476-876, Spring 2010 URL: www.cse.unl.edu/~ choueiry/S10-476-876

Berthe Y. Choueiry (Shu-we-ri) choueiry@cse.unl.edu, (402)472-5444

\square
Essence of search: which node to expand first?
\longrightarrow search strategy

A strategy is defined by picking the order of node expansion

Types of Search

Uninformed: use only information available in problem definition Heuristic: exploits some knowledge of the domain

Uninformed search strategies

co 1. Breadth-first search
2. Uniform-cost search
3. Depth-first search
4. Depth-limited search
5. Iterative deepening depth-first search
6. Bidirectional search

Search strategies

Criteria for evaluating search:

1. Completeness: does it always find a solution if one exists?
2. Time complexity: number of nodes generated/expanded
3. Space complexity: maximum number of nodes in memory
\perp 4. Optimality: does it always find a least-cost solution?

Time/space complexity measured in terms of:

- b: maximum branching factor of the search tree
- d : depth of the least-cost solution
- m : maximum depth of the search space (may be ∞)

$\stackrel{\pi}{6}$
 Breadth-first search (I)

\rightarrow Expand root node
\rightarrow Expand all children of root
\rightarrow Expand each child of root
\rightarrow Expand successors of each child of root, etc.

\longrightarrow Expands nodes at depth d before nodes at depth $d+1$
toz '0I Kaenaqə
\longrightarrow Systematically considers all paths length 1 , then length 2 , etc.
\longrightarrow Implement: put successors at end of queue.. FIFO
\square

Breadth-first search (3)

\longrightarrow One solution?
\longrightarrow Many solutions? Finds shallowest goal first

1. Complete? Yes, if b is finite
2. Optimal? provided cost increases monotonically with depth,
3. Time? $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$ $O\left(b^{d+1}\right)\left\{\begin{array}{l}\text { branching factor } b \\ \text { depth } d\end{array}\right.$
4. Space? same, $O\left(b^{d+1}\right)$, keeps every node in memory, big problem
can easily generate nodes at $10 \mathrm{MB} / \mathrm{sec}$ so $24 \mathrm{hrs}=860 \mathrm{~GB}$

Uniform-cost search (I)

\longrightarrow Breadth-first does not consider path cost $g(x)$
\longrightarrow Uniform-cost expands first lowest-cost node on the fringe
\longrightarrow Implement: sort queue in decreasing cost order
When $g(x)=\operatorname{Depth}(x) \longrightarrow$ Breadth-first \equiv Uniform-cost

(a)

(b)

Uniform-cost search (2)

1. Complete?

Yes, if cost $\geq \epsilon$
2. Optimal?

If the cost is a monotonically increasing function
When cost is added up along path, an operator's cost ?
3. Time?
\# of nodes with $g \leq$ cost of optimal solution, $O\left(b^{\left[C^{*} / \epsilon\right\rceil}\right)$ where C^{*} is the cost of the optimal solution
4. Space?
\# of nodes with $g \leq$ cost of optimal solution, $O\left(b^{\left[C^{*} / \epsilon\right\rceil}\right)$

Depth-first search (I)

\longrightarrow Expands nodes at deepest level in tree
\longrightarrow When dead-end, goes back to shallower levels
\longrightarrow Implement: put successors at front of queue.. LIFO

0toz'0t K.xenxqə
\longrightarrow Little memory: path and unexpanded nodes
For b : branching factor, m : maximum depth, space

Depth-first search (3)

Time complexity:
We may need to expand all paths, $O\left(b^{m}\right)$
When there are many solutions, DFS may be quicker than BFS
When m is big, much larger than d, ∞ (deep, loops), .. troubles
\longrightarrow Major drawback of DFS: going deep where there is no solution..

Properties:

1. Complete? Not in infinite spaces, complete in finite spaces
2. Optimal?
3. Time? $O\left(b^{m}\right)$ Woow.. terrible if m is much larger than d, but if solutions are dense, may be much faster than breadth-first
4. Space? $O(b m)$, linear!

Woow..

Depth-limited search (I)

\longrightarrow DFS is going too deep, put a threshold on depth!
For instance, 20 cities on map for Romania, any node deeper than 19 is cycling. Don't expand deeper!
\longrightarrow Implement: nodes at depth l have no successor
$\stackrel{\longmapsto}{\omega}$ Properties:

1. Complete?
2. Optimal?
3. Time? (given l depth limit)
4. Space? (given l depth limit)

Problem: how to choose l ?

Iterative-deepening search (I)

\rightarrow DLS with depth $=0$
\rightarrow DLS with depth $=1$
\rightarrow DLS with depth $=2$
\rightarrow DLS with depth $=3 \ldots$
Limit =0
Limit $=1 \quad \bigcirc$

Limit $=2 \quad 0$

Limit $=3 \quad 0$

\longrightarrow Combines benefits of DFS and BFS

Iterative-deepening search (3)
\longrightarrow combines benefits of DFS and BFS

Properties:

Һ 1. Time? $(d+1) \cdot b^{0}+(d) \cdot b+(d-1) \cdot b^{2}+\ldots+1 \cdot b^{d}=O\left(b^{d}\right)$
2. Space? $O(b d)$, like DFS
3. Complete? like BFS
4. Optimal? like BFS (if step cost $=1$)

Iterative-deepening search (4)

\longrightarrow Some nodes are expanded several times, wasteful?
$\mathrm{N}(\mathrm{BFS})=b+b^{2}+b^{3}+\ldots+b^{d}+\left(b^{d+1}-d\right)$
$\mathrm{N}(\mathrm{IDS})=(d) b+(d-1) b^{2}+\ldots+(1) b^{d}$
\rightleftarrows
Numerical comparison for $b=10$ and $d=5$:
$\mathrm{N}($ IDS $)=50+400+3,000+20,000+100,000=123,450$
$\mathrm{N}(\mathrm{BFS})=10+100+1,000+10,000+100,000+999,990=$
1,111,100
\longrightarrow IDS is preferred when search space is large and depth unknown

Bidirectional search (I)

\rightarrow Given initial state and the goal state, start search from both ends and meet in the middle

\rightarrow Assume same b branching factor, \exists solution at depth d, time: $O\left(2 b^{d / 2}\right)=O\left(b^{d / 2}\right)$
$b=10, d=6, \mathrm{DFS}=1,111,111$ nodes, $\mathrm{BDS}=2,222$ nodes!

Bidirectional search (2)

In practice :-(

- Need to define predecessor operators to search backwards If operator are invertible, no problem
- What if \exists many goals (set state)?
do as for multiple-state search
- need to check the 2 fringes to see how they match need to check whether any node in one space appears in the other space (use hashing) need to keep all nodes in a half in memory $O\left(b^{d / 2}\right)$
- What kind of search in each half space?

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening
Complete?	Yes	Yes*	No	Yes, if $l \geq d$	Yes
Time	b^{d+1}	$b^{\left[C^{*} / \epsilon\right\rceil}$	b^{m}	b^{l}	b^{d}
Space	b^{d+1}	$b^{\left\lceil C^{*} / \epsilon\right\rceil}$	$b m$	$b l$	$b d$
Optimal?	Yes *	Yes *	No	No	Yes

b branching factor
d solution depth
m maximum depth of tree
l depth limit

Loops: (2)
Keep nodes in two lists: $\left\{\begin{array}{l}\text { Open list: Fringe } \\ \text { Closed list: Leaf and expansed nodes }\end{array}\right.$
Discard a current node that matches a node in the closed list Tree-Search \longrightarrow Graph-Search

Issues:

1. Implementation: hash table, access is constant time

Trade-off cost of storing + checking vs. cost of searching
2. Losing optimality when new path is cheaper/shorter of the one stored
3. DFS and IDS now require exponential storage

Summary

Path: sequence of actions leading from one state to another Partial solution: a path from an initial state to another state Search: develop a sets of partial solutions

- Search tree \& its components (node, root, leaves, fringe)

N - Data structure for a search node

- Search space vs. state space
- Node expansion, queue order
- Search types: uninformed vs. heuristic
- 6 uninformed search strategies
- 4 criteria for evaluating \& comparing search strategies

