Homework 4

Except for the two programming questions (i.e., Exercice 1 and 4), which must be submitted with webhandin, you may turn in your homework on paper or type it and submit it to webhandin.

Value: 96 points for ugrads and 100 points for grads.

1 Implementing a simple-reflex agent. Total: 15 points

- Write in Common Lisp a function that ‘models’ the simple-reflex agent for the vacuum-cleaner problem in an environment with two locations, as summarized on page 5 of the Instructor’s notes #4. The function should take as input the percepts of the agent as location of the agent and status of the room.

- Write a Common Lisp function that takes any of the 8 possible states of the vacuum-cleaner of Figure 3.20 of AIMA and runs the simple-reflect agent until the goal is reached.

- Design a performance measure that penalizes the agent for each step and each suck action. Record the agent performance for each one of the above 8 possible states.

2 AIMA, Exercise 3.6, Page 113. Total 8/12 points

- a: for ugrads and grads. 4 points
- b: for ugrads and grads. 4 points
- d: grads (bonus for ugrads). 4 points

3 AIMA, Exercise 3.9, Page 115. Total: 38 points

- Question a: 6 points
- Question b: 30 points. You need to implement your algorithm in Common Lisp.
- Question c: 2 points

4 AIMA, Exercise 3.15, Page 116. Total: 10 points

5 Evaluation function. Total: 6 points

Adapted from AIMA, Edition 1.

With \(g(n) \) being the path length,
1. Suppose that we run a greedy search algorithm with \(h(n) = -g(n) \). What sort of search will the greedy search emulate?
 Explain.
 3 points

2. Suppose that we run a search algorithm with \(h(n) = g(n) \). What sort of search will the greedy search emulate?
 Explain.
 3 points

6 AIMA, Exercise 3.21, Page 117. Total: 9 points

7 AIMA, Exercise 3.23, Page 118. Total: 10 points